ترغب بنشر مسار تعليمي؟ اضغط هنا

First results on Martian carbon monoxide from Herschel/HIFI observations

130   0   0.0 ( 0 )
 نشر من قبل Miguel de Val-Borro
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the initial analysis of Herschel/HIFI carbon monoxide (CO) observations of the Martian atmosphere performed between 11 and 16 April 2010. We selected the (7-6) rotational transitions of the isotopes ^{13}CO at 771 GHz and C^{18}O at 768 GHz in order to retrieve the mean vertical profile of temperature and the mean volume mixing ratio of carbon monoxide. The derived temperature profile agrees within less than 5 K with general circulation model (GCM) predictions up to an altitude of 45 km, however, show about 12-15 K lower values at 60 km. The CO mixing ratio was determined as 980 pm 150 ppm, in agreement with the 900 ppm derived from Herschel/SPIRE observations in November 2009.

قيم البحث

اقرأ أيضاً

Context: The dusty debris disk around the $sim$20 Myr old main-sequence A-star {beta} Pictoris is known to contain gas. Evidence points towards a secondary origin of the gas as opposed to being a direct remnant form the initial protoplanetary disk, a lthough the dominant gas production mechanism is so far not identified. The origin of the observed overabundance of C and O compared to solar abundances of metallic elements, e.g. Na and Fe, is also unclear. Aims: Our goal is to constrain the spatial distribution of C in the disk, and thereby the gas origin and its abundance pattern. Methods: We used the HIFI instrument onboard Herschel to observe and spectrally resolve CII emission at 158 $mu$m from the {beta} Pic debris disk. Assuming Keplerian rotation, we use the spectrally resolved line profile to constrain the spatial distribution of the gas. Results: We show that most of the gas is located around $sim$100 AU or beyond. We estimate a total C gas mass of $1.3times10^{-2}$ M$_oplus$. The data suggest that more gas is located on the southwest side of the disk than on the northeast side. The data are consistent with the hypothesis of a well-mixed gas (constant C/Fe ratio throughout the disk). Assuming instead a spatial profile expected from a simplified accretion disk model, we found it to give a significantly worse fit to the observations. Conclusions: Since the bulk of the gas is found outside 30 AU, we argue that the cometary objects known as falling evaporating bodies are unlikely to be the dominant source of gas; production from grain-grain collisions or photodesorption seems more likely. The incompatibility of the observations with a simplified accretion disk model could favour a preferential depletion explanation for the overabundance of C and O. More stringent constraints on the spatial distribution will be available from ALMA observations of CI at 609 $mu$m.
This paper reviews the first results of observations of H2O line emission with Herschel-HIFI towards high-mass star-forming regions, obtained within the WISH guaranteed time program. The data reveal three kinds of gas-phase H2O: `cloud water in cold tenuous foreground clouds, `envelope water in dense protostellar envelopes, and `outflow water in protostellar outflows. The low H2O abundance (1e-10 -- 1e-9) in foreground clouds and protostellar envelopes is due to rapid photodissociation and freeze-out on dust grains, respectively. The outflows show higher H2O abundances (1e-7 -- 1e-6) due to grain mantle evaporation and (probably) neutral-neutral reactions.
We report on the initial analysis of a Herschel/PACS full range spectrum of Neptune, covering the 51-220 micrometer range with a mean resolving power of ~ 3000, and complemented by a dedicated observation of CH4 at 120 micrometers. Numerous spectral features due to HD (R(0) and R(1)), H2O, CH4, and CO are present, but so far no new species have been found. Our results indicate that (i) Neptunes mean thermal profile is warmer by ~ 3 K than inferred from the Voyager radio-occultation; (ii) the D/H mixing ratio is (4.5+/-1) X 10**-5, confirming the enrichment of Neptune in deuterium over the protosolar value (~ 2.1 X 10**-5); (iii) the CH4 mixing ratio in the mid stratosphere is (1.5+/-0.2) X 10**-3, and CH4 appears to decrease in the lower stratosphere at a rate consistent with local saturation, in agreement with the scenario of CH4 stratospheric injection from Neptunes warm south polar region; (iv) the H2O stratospheric column is (2.1+/-0.5) X 10**14 cm-2 but its vertical distribution is still to be determined, so the H2O external flux remains uncertain by over an order of magnitude; and (v) the CO stratospheric abundance is about twice the tropospheric value, confirming the dual origin of CO suspected from ground-based millimeter/submillimeter observations.
We report the discovery of water vapour toward the carbon star V Cygni. We have used Herschels HIFI instrument, in dual beam switch mode, to observe the 1(11) - 0(00) para-water transition at 1113.3430 GHz in the upper sideband of the Band 4b receive r. The observed spectral line profile is nearly parabolic, but with a slight asymmetry associated with blueshifted absorption, and the integrated antenna temperature is 1.69 pm 0.17 K km/s. This detection of thermal water vapour emission, carried out as part of a small survey of water in carbon-rich stars, is only the second such detection toward a carbon-rich AGB star, the first having been obtained by the Submillimeter Wave Astronomy Satellite toward IRC+10216. For an assumed ortho-to-para ratio of 3 for water, the observed line intensity implies a water outflow rate ~ (3 - 6) E-5 Earth masses per year and a water abundance relative to H2 of ~ (2-5) E-6. This value is a factor of at least 1E+4 larger than the expected photospheric abundance in a carbon-rich environment, and - as in IRC+10216 - raises the intriguing possibility that the observed water is produced by the vapourisation of orbiting comets or dwarf planets. However, observations of the single line observed to date do not permit us to place strong constraints upon the spatial distribution or origin of the observed water, but future observations of additional transitions will allow us to determine the inner radius of the H2O-emitting zone, and the H2O ortho-to-para ratio, and thereby to place important constraints upon the origin of the observed water emission.
We report on an initial analysis of Herschel/HIFI observations of hydrogen chloride (HCl), hydrogen peroxide (H_2O_2), and molecular oxygen (O_2) in the Martian atmosphere performed on 13 and 16 April 2010 (L_s ~ 77{deg}). We derived a constant volum e mixing ratio of 1400 +/- 120 ppm for O_2 and determined upper limits of 200 ppt for HCl and 2 ppb for H_2O_2. Radiative transfer model calculations indicate that the vertical profile of O_2 may not be constant. Photochemical models determine the lowest values of H_2O_2 to be around L_s ~ 75{deg} but overestimate the volume mixing ratio compared to our measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا