ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological Anderson Insulator in Three Dimensions

107   0   0.0 ( 0 )
 نشر من قبل Marcel Franz
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Disorder, ubiquitously present in solids, is normally detrimental to the stability of ordered states of matter. In this letter we demonstrate that not only is the physics of a strong topological insulator robust to disorder but, remarkably, under certain conditions disorder can become fundamentally responsible for its existence. We show that disorder, when sufficiently strong, can transform an ordinary metal with strong spin-orbit coupling into a strong topological `Anderson insulator, a new topological phase of quantum matter in three dimensions.



قيم البحث

اقرأ أيضاً

81 - Yanxia Xing , Lei Zhang , 2011
We study the nature of the disorder-induced quantized conductance, i.e., the phenomena of topological Anderson insulator (TAI) induced in HgTe/CdTe semiconductor quantum well. The disorder effect in several different systems where anomalous Hall effe ct exist, is numerically studied using the tight-binding Hamiltonian. It is found that the TAI phenomena also occur in the modified Dirac model where the quadratic corrections $k^2sigma_z$ is included and electron-hole symmetry is kept. It also occurs in the graphene system with the next nearest-neighbor coupling and staggered sublattice potential. Comparison between the localization lengths of the 2D ribbon and 2D cylinder clearly reveals the topological nature of this phenomena. Furthermore, analysis on the local current density in anomalous quantum Hall systems where the TAI phenomena can or can not arise reveals the nature of TAI phenomena: the bulk state is killed drastically and only the robust edge state survives in a moderate disorder. When the edge state is robust enough to resist the strong disorder that can completely kills the bulk state, TAI phenomena arise.
118 - Quan Lin , Tianyu Li , Lei Xiao 2021
Disorder and non-Hermiticity dramatically impact the topological and localization properties of a quantum system, giving rise to intriguing quantum states of matter. The rich interplay of disorder, non-Hermiticity, and topology is epitomized by the r ecently proposed non-Hermitian topological Anderson insulator that hosts a plethora of exotic phenomena. Here we experimentally simulate the non-Hermitian topological Anderson insulator using disordered photonic quantum walks, and characterize its localization and topological properties. In particular, we focus on the competition between Anderson localization induced by random disorder, and the non-Hermitian skin effect under which all eigenstates are squeezed toward the boundary. The two distinct localization mechanisms prompt a non-monotonous change in profile of the Lyapunov exponent, which we experimentally reveal through dynamic observables. We then probe the disorder-induced topological phase transitions, and demonstrate their biorthogonal criticality. Our experiment further advances the frontier of synthetic topology in open systems.
146 - H.-M. Guo , M. Franz 2009
Itinerant electrons in a two-dimensional Kagome lattice form a Dirac semi-metal, similar to graphene. When lattice and spin symmetries are broken by various periodic perturbations this semi-metal is shown to spawn interesting non-magnetic insulating phases. These include a two-dimensional topological insulator with a non-trivial Z_2 invariant and robust gapless edge states, as well as dimerized and trimerized `Kekule insulators. The latter two are topologically trivial but the Kekule phase possesses a complex order parameter with fractionally charged vortex excitations. A charge density wave is shown to couple to the Dirac fermions as an effective axial gauge field.
The recent theoretical prediction and experimental realization of topological insulators (TI) has generated intense interest in this new state of quantum matter. The surface states of a three-dimensional (3D) TI such as Bi_2Te_3, Bi_2Se_3 and Sb_2Te_ 3 consist of a single massless Dirac cones. Crossing of the two surface state branches with opposite spins in the materials is fully protected by the time reversal (TR) symmetry at the Dirac points, which cannot be destroyed by any TR invariant perturbation. Recent advances in thin-film growth have permitted this unique two-dimensional electron system (2DES) to be probed by scanning tunneling microscopy (STM) and spectroscopy (STS). The intriguing TR symmetry protected topological states were revealed in STM experiments where the backscattering induced by non-magnetic impurities was forbidden. Here we report the Landau quantization of the topological surface states in Bi_2Se_3 in magnetic field by using STM/STS. The direct observation of the discrete Landau levels (LLs) strongly supports the 2D nature of the topological states and gives direct proof of the nondegenerate structure of LLs in TI. We demonstrate the linear dispersion of the massless Dirac fermions by the square-root dependence of LLs on magnetic field. The formation of LLs implies the high mobility of the 2DES, which has been predicted to lead to topological magneto-electric effect of the TI.
The properties of topological systems are inherently tied to their dimensionality. Higher-dimensional physical systems exhibit topological properties not shared by their lower dimensional counterparts and, in general, offer richer physics. One exampl e is a d-dimensional quantized multipole topological insulator, which supports multipoles of order up to 2^d and a hierarchy of gapped boundary modes with topological 0-D corner modes at the top. While multipole topological insulators have been successfully realized in electromagnetic and mechanical 2D systems with quadrupole polarization, and a 3D octupole topological insulator was recently demonstrated in acoustics, going beyond the three physical dimensions of space is an intriguing and challenging task. In this work, we apply dimensional reduction to map a 4D higher-order topological insulator (HOTI) onto an equivalent aperiodic 1D array sharing the same spectrum, and emulate in this system the properties of a hexadecapole topological insulator. We observe the 1D counterpart of zero-energy states localized at 4D HOTI corners - the hallmark of multipole topological phase. Interestingly, the dimensional reduction guarantees that one of the 4D corner states remains localized to the edge of the 1D array, while all other localize in the bulk and retain their zero-energy eigenvalues. This discovery opens new directions in multi-dimensional topological physics arising in lower-dimensional aperiodic systems, and it unveils highly unusual resonances protected by topological properties inherited from higher dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا