ﻻ يوجد ملخص باللغة العربية
We determine the evolution of the co-moving density of the most massive ($M_* geq 10^{12} M_odot$) early-type galaxy population in the redshift range of $z = 0.15$ - 0.45 in different stellar mass ranges using data from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7) catalog. We find that the co-moving number density of these galaxies grew exponentially, weakly depending on the stellar mass range, as a function of cosmic time with a time-scale of $tau simeq 1.16 pm 0.16$ Gyr for at least 4 Gyr ending around $z simeq 0.15$. This is about a factor of ten of growth between $z=0.5$ - 0.15. Since $z simeq 0.15$ a constant co-moving number density can be measured. According to theoretical models the most massive early-type galaxies gain most of their stellar mass via dry merging but the major merger rate measured by others cannot account for the high growth in number density we measured thus, stellar mass gain from minor mergers and slow, smooth accretion seems to play an important role. We outline a simple analytic model that explains the observed evolution based on the exponential decline of the luminosity function and sets constraints on the time dependence of the close-pair fraction of merger candidate galaxies.
[Abridged] In this paper we derive the central stellar mass density within a fixed radius and the effective stellar mass density within the effective radius for a complete sample of 34 ETGs morphologically selected at 0.9<z_{spec}<2 and compare them
Observational studies are showing that the galaxy-wide stellar initial mass function are top-heavy in galaxies with high star-formation rates (SFRs). Calculating the integrated galactic stellar initial mass function (IGIMF) as a function of the SFR o
We analyze 40 cosmological re-simulations of individual massive galaxies with present-day stellar masses of $M_{*} > 6.3 times 10^{10} M_{odot}$ in order to investigate the physical origin of the observed strong increase in galaxy sizes and the decre
We employ cosmological hydrodynamical simulations to investigate the effects of AGN feedback on the formation of massive galaxies with present-day stellar masses of $M_{stel} = 8.8 times 10^{10} - 6.0 times 10^{11} M_{sun}$. Using smoothed particle h
The current consensus is that galaxies begin as small density fluctuations in the early Universe and grow by in situ star formation and hierarchical merging. Stars begin to form relatively quickly in sub-galactic sized building blocks called haloes w