ترغب بنشر مسار تعليمي؟ اضغط هنا

Exponential growth of the number density of massive early-type galaxies

125   0   0.0 ( 0 )
 نشر من قبل L\\'aszl\\'o Dobos
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We determine the evolution of the co-moving density of the most massive ($M_* geq 10^{12} M_odot$) early-type galaxy population in the redshift range of $z = 0.15$ - 0.45 in different stellar mass ranges using data from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7) catalog. We find that the co-moving number density of these galaxies grew exponentially, weakly depending on the stellar mass range, as a function of cosmic time with a time-scale of $tau simeq 1.16 pm 0.16$ Gyr for at least 4 Gyr ending around $z simeq 0.15$. This is about a factor of ten of growth between $z=0.5$ - 0.15. Since $z simeq 0.15$ a constant co-moving number density can be measured. According to theoretical models the most massive early-type galaxies gain most of their stellar mass via dry merging but the major merger rate measured by others cannot account for the high growth in number density we measured thus, stellar mass gain from minor mergers and slow, smooth accretion seems to play an important role. We outline a simple analytic model that explains the observed evolution based on the exponential decline of the luminosity function and sets constraints on the time dependence of the close-pair fraction of merger candidate galaxies.



قيم البحث

اقرأ أيضاً

138 - P. Saracco 2012
[Abridged] In this paper we derive the central stellar mass density within a fixed radius and the effective stellar mass density within the effective radius for a complete sample of 34 ETGs morphologically selected at 0.9<z_{spec}<2 and compare them with those derived for a sample of ~900 local ETGs in the same mass range. We find that the central stellar mass density of high-z ETGs spans just an order of magnitude and it is similar to the one of local ETGs as actually found in previous studies.However, we find that the effective stellar mass density of high-z ETGs spans three orders of magnitude, exactly as the local ETGs and that it is similar to the effective stellar mass density of local ETGs showing that it has not changed since z~1.5, in the last 9-10 Gyr. Thus, the wide spread of the effective stellar mass density observed up to z~1.5 must originate earlier, at z>2. Also, we show that the small scatter of the central mass density of ETGs compared to the large scatter of the effective mass density is simply a peculiar feature of the Sersic profile hence, independent of redshift and of any assembly history experienced by galaxies. Thus, it has no connection with the possible inside-out growth of ETGs. Finally, we find a tight correlation between the central stellar mass density and the total stellar mass of ETGs in the sense that the central mass density increases with mass as M^{~0.6}. This implies that the fraction of the central stellar mass of ETGs decreases with the mass of the galaxy. These correlations are valid for the whole population of ETGs considered independently of their redshift suggesting that they originate in the early-phases of their formation.
211 - Carsten Weidner 2013
Observational studies are showing that the galaxy-wide stellar initial mass function are top-heavy in galaxies with high star-formation rates (SFRs). Calculating the integrated galactic stellar initial mass function (IGIMF) as a function of the SFR o f a galaxy, it follows that galaxies which have or which formed with SFRs > 10 Msol yr^-1 would have a top-heavy IGIMF in excellent consistency with the observations. Consequently and in agreement with observations, elliptical galaxies would have higher M/L ratios as a result of the overabundance of stellar remnants compared to a stellar population that formed with an invariant canonical stellar initial mass function (IMF). For the Milky Way, the IGIMF yields very good agreement with the disk- and the bulge-IMF determinations. Our conclusions are that purely stochastic descriptions of star formation on the scales of a pc and above are falsified. Instead, star formation follows the laws, stated here as axioms, which define the IGIMF theory. We also find evidence that the power-law index beta of the embedded cluster mass function decreases with increasing SFR. We propose further tests of the IGIMF theory through counting massive stars in dwarf galaxies.
We analyze 40 cosmological re-simulations of individual massive galaxies with present-day stellar masses of $M_{*} > 6.3 times 10^{10} M_{odot}$ in order to investigate the physical origin of the observed strong increase in galaxy sizes and the decre ase of the stellar velocity dispersions since redshift $z approx 2$. At present 25 out of 40 galaxies are quiescent with structural parameters (sizes and velocity dispersions) in agreement with local early type galaxies. At z=2 all simulated galaxies with $M_* gtrsim 10^{11}M_{odot}$ (11 out of 40) at z=2 are compact with projected half-mass radii of $approx$ 0.77 ($pm$0.24) kpc and line-of-sight velocity dispersions within the projected half-mass radius of $approx$ 262 ($pm$28) kms$^{-1}$ (3 out of 11 are already quiescent). Similar to observed compact early-type galaxies at high redshift the simulated galaxies are clearly offset from the local mass-size and mass-velocity dispersion relations. Towards redshift zero the sizes increase by a factor of $sim 5-6$, following $R_{1/2} propto (1+z)^{alpha}$ with $alpha = -1.44$ for quiescent galaxies ($alpha = -1.12$ for all galaxies). The velocity dispersions drop by about one-third since $z approx 2$, following $sigma_{1/2} propto (1+z)^{beta}$ with $beta = 0.44$ for the quiescent galaxies ($beta = 0.37$ for all galaxies). The simulated size and dispersion evolution is in good agreement with observations and results from the subsequent accretion and merging of stellar systems at $zlesssim 2$ which is a natural consequence of the hierarchical structure formation. A significant number of the simulated massive galaxies (7 out of 40) experience no merger more massive than 1:4 (usually considered as major mergers). On average, the dominant accretion mode is stellar minor mergers with a mass-weighted mass-ratio of 1:5. (abridged)
We employ cosmological hydrodynamical simulations to investigate the effects of AGN feedback on the formation of massive galaxies with present-day stellar masses of $M_{stel} = 8.8 times 10^{10} - 6.0 times 10^{11} M_{sun}$. Using smoothed particle h ydrodynamics simulations with a pressure-entropy formulation that allows an improved treatment of contact discontinuities and fluid mixing, we run three sets of simulations of 20 halos with different AGN feedback models: (1) no feedback, (2) thermal feedback, and (3) mechanical and radiation feedback. We assume that seed black holes are present at early cosmic epochs at the centre of emerging dark matter halos and trace their mass growth via gas accretion and mergers with other black holes. Both feedback models successfully recover the observed M_BH - sigma relation and black hole-to-stellar mass ratio for simulated central early-type galaxies. The baryonic conversion efficiencies are reduced by a factor of two compared to models without any AGN feedback at all halo masses. However, massive galaxies simulated with thermal AGN feedback show a factor of ~10-100 higher X-ray luminosities than observed. The mechanical/radiation feedback model reproduces the observed correlation between X-ray luminosities and velocity dispersion, e.g. for galaxies with sigma = 200 km/s, the X-ray luminosity is reduced from $10^{42}$ erg/s to $10^{40}$ erg/s. It also efficiently suppresses late time star formation, reducing the specific star formation rate from $10^{-10.5}$ $yr^{-1}$ to $10^{-14}$ $yr^{-1}$ on average and resulting in quiescent galaxies since z=2, whereas the thermal feedback model shows higher late time in-situ star formation rates than observed.
The current consensus is that galaxies begin as small density fluctuations in the early Universe and grow by in situ star formation and hierarchical merging. Stars begin to form relatively quickly in sub-galactic sized building blocks called haloes w hich are subsequently assembled into galaxies. However, exactly when this assembly takes place is a matter of some debate. Here we report that the stellar masses of brightest cluster galaxies, which are the most luminous objects emitting stellar light, some 9 billion years ago are not significantly different from their stellar masses today. Brightest cluster galaxies are almost fully assembled 4-5 Gyrs after the Big Bang, having grown to more than 90% of their final stellar mass by this time. Our data conflict with the most recent galaxy formation models based on the largest simulations of dark matter halo development. These models predict protracted formation of brightest cluster galaxies over a Hubble time, with only 22% of the stellar mass assembled at the epoch probed by our sample. Our findings suggest a new picture in which brightest cluster galaxies experience an early period of rapid growth rather than prolonged hierarchical assembly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا