ترغب بنشر مسار تعليمي؟ اضغط هنا

On the contribution of backward jumps to instruction sequence expressiveness

209   0   0.0 ( 0 )
 نشر من قبل Inge Bethke
 تاريخ النشر 2010
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the expressiveness of backward jumps in a framework of formalized sequential programming called program algebra. We show that - if expressiveness is measured in terms of the computability of partial Boolean functions - then backward jumps are superfluous. If we, however, want to prevent explosion of the length of programs, then backward jumps are essential.



قيم البحث

اقرأ أيضاً

85 - Jan A. Bergstra 2019
The number of instructions of an instruction sequence is taken for its logical SLOC, and is abbreviated with LLOC. A notion of quantitative expressiveness is based on LLOC and in the special case of operation over a family of single bit registers a c ollection of elementary properties are established. A dedicated notion of interface is developed and is used for stating relevant properties of classes of instruction sequences
A combination of program algebra with the theory of meadows is designed leading to a theory of computation in algebraic structures which use in addition to a zero test and copying instructions the instruction set ${x Leftarrow 0, x Leftarrow 1, xLeft arrow -x, xLeftarrow x^{-1}, xLeftarrow x+y, xLeftarrow xcdot y}$. It is proven that total functions on cancellation meadows can be computed by straight-line programs using at most 5 auxiliary variables. A similar result is obtained for signed meadows.
135 - Marco Bernardo 2010
Several Markovian process calculi have been proposed in the literature, which differ from each other for various aspects. With regard to the action representation, we distinguish between integrated-time Markovian process calculi, in which every actio n has an exponentially distributed duration associated with it, and orthogonal-time Markovian process calculi, in which action execution is separated from time passing. Similar to deterministically timed process calculi, we show that these two options are not irreconcilable by exhibiting three mappings from an integrated-time Markovian process calculus to an orthogonal-time Markovian process calculus that preserve the behavioral equivalence of process terms under different interpretations of action execution: eagerness, laziness, and maximal progress. The mappings are limited to classes of process terms of the integrated-time Markovian process calculus with restrictions on parallel composition and do not involve the full capability of the orthogonal-time Markovian process calculus of expressing nondeterministic choices, thus elucidating the only two important differences between the two calculi: their synchronization disciplines and their ways of solving choices.
148 - Nuria Brede , Nicola Botta 2020
In control theory, to solve a finite-horizon sequential decision problem (SDP) commonly means to find a list of decision rules that result in an optimal expected total reward (or cost) when taking a given number of decision steps. SDPs are routinely solved using Bellmans backward induction. Textbook authors (e.g. Bertsekas or Puterman) typically give more or less formal proofs to show that the backward induction algorithm is correct as solution method for deterministic and stochastic SDPs. Botta, Jansson and Ionescu propose a generic framework for finite horizon, monadic SDPs together with a monadic version of backward induction for solving such SDPs. In monadic SDPs, the monad captures a generic notion of uncertainty, while a generic measure function aggregates rewards. In the present paper we define a notion of correctness for monadic SDPs and identify three conditions that allow us to prove a correctness result for monadic backward induction that is comparable to textbook correctness proofs for ordinary backward induction. The conditions that we impose are fairly general and can be cast in category-theoretical terms using the notion of Eilenberg-Moore-algebra. They hold in familiar settings like those of deterministic or stochastic SDPs but we also give examples in which they fail. Our results show that backward induction can safely be employed for a broader class of SDPs than usually treated in textbooks. However, they also rule out certain instances that were considered admissible in the context of Botta et al.s generic framework. Our development is formalised in Idris as an extension of the Botta et al. framework and the sources are available as supplementary material.
352 - Rob van Glabbeek 2018
This paper proposes a definition of what it means for one system description language to encode another one, thereby enabling an ordering of system description languages with respect to expressive power. I compare the proposed definition with other d efinitions of encoding and expressiveness found in the literature, and illustrate it on a well-known case study: the encoding of the synchronous in the asynchronous $pi$-calculus.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا