ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact of Supernova feedback on the Tully-Fisher relation

253   0   0.0 ( 0 )
 نشر من قبل Maria Emilia De Rossi
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent observational results found a bend in the Tully-Fisher Relation in such a way that low mass systems lay below the linear relation described by more massive galaxies. We intend to investigate the origin of the observed features in the stellar and baryonic Tully-Fisher relations and analyse the role played by galactic outflows on their determination. Cosmological hydrodynamical simulations which include Supernova feedback were performed in order to follow the dynamical evolution of galaxies. We found that Supernova feedback is a fundamental process in order to reproduce the observed trends in the stellar Tully-Fisher relation. Simulated slow rotating systems tend to have lower stellar masses than those predicted by the linear fit to the massive end of the relation, consistently with observations. This feature is not present if Supernova feedback is turned off. In the case of the baryonic Tully-Fisher relation, we also detect a weaker tendency for smaller systems to lie below the linear relation described by larger ones. This behaviour arises as a result of the more efficient action of Supernovae in the regulation of the star formation process and in the triggering of powerful galactic outflows in shallower potential wells which may heat up and/or expel part of the gas reservoir.



قيم البحث

اقرأ أيضاً

We analyse the Tully-Fisher relation at moderate redshift from the point of view of the underlying stellar populations, by comparing optical and NIR photometry with a phenomenological model that combines population synthesis with a simple prescriptio n for chemical enrichment. The sample comprises 108 late-type galaxies extracted from the FORS Deep Field (FDF) and William Herschel Deep Field (WHDF) surveys at z<1 (median redshift z=0.45). A correlation is found between stellar mass and the parameters that describe the star formation history, with massive galaxies forming their populations early (zFOR~3), with star formation timescales, tau1~4Gyr; although with very efficient chemical enrichment timescales (tau2~1Gyr). In contrast, the stellar-to-dynamical mass ratio - which, in principle, would track the efficiency of feedback in the baryonic processes driving galaxy formation - does not appear to correlate with the model parameters. On the Tully-Fisher plane, no significant age segregation is found at fixed circular speed, whereas at fixed stellar-to-dynamical mass fraction, age splits the sample, with older galaxies having faster circular speeds at fixed Ms/Mdyn. Although our model does not introduce any prior constraint on dust reddening, we obtain a strong correlation between colour excess and stellar mass.
We explore the use of the baryonic Tully-Fisher relation (bTFR) as a new distance indicator. Advances in near-IR imaging and stellar population models, plus precise rotation curves, have reduced the scatter in the bTFR such that distance is the domin ant source of uncertainty. Using 50 galaxies with accurate distances from Cepheids or tip magnitude of the red giant branch, we calibrate the bTFR on a scale independent of $H_o$. We then apply this calibrated bTFR to 95 independent galaxies from the SPARC sample, using CosmicFlows-3 velocities, to deduce the local value of $H_o$. We find $H_o$ = 75.1 +/- 2.3 (stat) +/- 1.5 (sys) km s$^{-1}$ Mpc$^{-1}$.
We validate the baryonic Tully Fisher (BTF) relation by exploring the Tully Fish er (TF) and BTF properties of optically and HI-selected disk galaxies. The data includes galaxies from: Sakai et al. (2000) calibrator sample; McGaugh et al. (2000: MC20 00) I-band sample; and 18 newly acquired HI-selected field dwarf galaxies observed with the ANU 2.3m telescope and the ATNF Parkes telescope from Gurovichs thesis sample (2005). As in MC2000, we re-cast the TF and BTF relations as relationships between baryo n mass and W_{20}. First we report some numerical errors in MC2000. Then, we c alculate weighted bi-variate linear fits to the data, and finally we compare the fits of the intrinsically fainter dwarfs with the brighter galaxies of Sakai et al. (2000). With regards to the local calibrator disk galaxies of Sakai et al. (2000), our results suggest that the BTF relation is indeed tighter than the T F relation and that the slopes of the BTF relations are statistically flatter th an the equivalent TF relations. Further, for the fainter galaxies which include the I-band MCG2000 and HI-selected galaxies of Gurovichs thesis sample, we calc ulate a break from a simple power law model because of what appears to be real c osmic scatter. Not withstanding this point, the BTF models are marginally better models than the equivalent TF ones with slightly smaller reduced chi^2.
In order to explore local large-scale structures and velocity fields, accurate galaxy distance measures are needed. We now extend the well-tested recipe for calibrating the correlation between galaxy rotation rates and luminosities -- capable of prov iding such distance measures -- to the all-sky, space-based imaging data from the Wide-field Infrared Survey Explorer (WISE) W1 ($3.4mu$m) and W2 ($4.6mu$m) filters. We find a linewidth to absolute magnitude correlation (known as the Tully-Fisher Relation, TFR) of $mathcal{M}^{b,i,k,a}_{W1} = -20.35 - 9.56 (log W^i_{mx} - 2.5)$ (0.54 magnitudes rms) and $mathcal{M}^{b,i,k,a}_{W2} = -19.76 - 9.74 (log W^i_{mx} - 2.5)$ (0.56 magnitudes rms) from 310 galaxies in 13 clusters. We update the I-band TFR using a sample 9% larger than in Tully & Courtois (2012). We derive $mathcal{M}^{b,i,k}_I = -21.34 - 8.95 (log W^i_{mx} - 2.5)$ (0.46 magnitudes rms). The WISE TFRs show evidence of curvature. Quadratic fits give $mathcal{M}^{b,i,k,a}_{W1} = -20.48 - 8.36 (log W^i_{mx} - 2.5) + 3.60 (log W^i_{mx} - 2.5)^2$ (0.52 magnitudes rms) and $mathcal{M}^{b,i,k,a}_{W2} = -19.91 - 8.40 (log W^i_{mx} - 2.5) + 4.32 (log W^i_{mx} - 2.5)^2$ (0.55 magnitudes rms). We apply an I-band -- WISE color correction to lower the scatter and derive $mathcal{M}_{C_{W1}} = -20.22 - 9.12 (log W^i_{mx} - 2.5)$ and $mathcal{M}_{C_{W2}} = -19.63 - 9.11 (log W^i_{mx} - 2.5)$ (both 0.46 magnitudes rms). Using our three independent TFRs (W1 curved, W2 curved and I-band), we calibrate the UNION2 supernova Type Ia sample distance scale and derive $H_0 = 74.4 pm 1.4$(stat) $pm 2.4$(sys) kms$^{-1}$ Mpc$^{-1}$ with 4% total error.
116 - M. Puech 2009
[abr.] Using the multi-integral-field spectrograph GIRAFFE at VLT, we previsouly derived the stellar-mass Tully-Fisher Relation (smTFR) at z~0.6, and found that the distant relation is systematically offset by roughly a factor of two toward lower mas ses. We extend the study of the evolution of the TFR by establishing the first distant baryonic TFR. To derive gas masses in distant galaxies, we estimate a gas radius and invert the Schmidt-Kennicutt law between star formation rate and gas surface densities. We find that gas extends farther out than the UV light from young stars, a median of ~30%. We present the first baryonic TFR (bTFR) ever established at intermediate redshift and show that, within an uncertainty of +/-0.08 dex, the zeropoint of the bTFR does not appear to evolve between z~0.6 and z=0. The absence of evolution in the bTFR over the past 6 Gyr implies that no external gas accretion is required for distant rotating disks to sustain star formation until z=0 and convert most of their gas into stars. Finally, we confirm that the larger scatter found in the distant smTFR, and hence in the bTFR, is caused entirely by major mergers. This scatter results from a transfer of energy from bulk motions in the progenitors, to random motions in the remnants, generated by shocks during the merging. Shocks occurring during these events naturally explain the large extent of ionized gas found out to the UV radius in z~0.6 galaxies. All the results presented in this paper support the ``spiral rebuilding scenario of Hammer and collaborators, i.e., that a large fraction of local spiral disks have been reprocessed during major mergers in the past 8 Gyr.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا