ﻻ يوجد ملخص باللغة العربية
Type I X-ray bursts are thermonuclear stellar explosions driven by charged-particle reactions. In the regime for combined H/He-ignition, the main nuclear flow is dominated by the rp-process (rapid proton-captures and beta+ decays), the 3 alpha-reaction, and the alpha-p-process (a suite of (alpha,p) and (p,gamma) reactions). The main flow is expected to proceed away from the valley of stability, eventually reaching the proton drip-line beyond A = 38. Detailed analysis of the relevant reactions along the main path has only been scarcely addressed, mainly in the context of parameterized one-zone models. In this paper, we present a detailed study of the nucleosynthesis and nuclear processes powering type I X-ray bursts. The reported 11 bursts have been computed by means of a spherically symmetric (1D), Lagrangian, hydrodynamic code, linked to a nuclear reaction network that contains 325 isotopes (from 1H to 107Te), and 1392 nuclear processes. These evolutionary sequences, followed from the onset of accretion up to the explosion and expansion stages, have been performed for 2 different metallicities to explore the dependence between the extension of the main nuclear flow and the initial metal content. We carefully analyze the dominant reactions and the products of nucleosynthesis, together with the the physical parameters that determine the light curve (including recurrence times, ratios between persistent and burst luminosities, or the extent of the envelope expansion). Results are in qualitative agreement with the observed properties of some well-studied bursting sources. Leakage from the predicted SbSnTe-cycle cannot be discarded in some of our models. Production of 12C (and implications for the mechanism that powers superbursts), light p-nuclei, and the amount of H left over after the bursting episodes will also be discussed.
Type I X-ray bursts are thermonuclear explosions that occur in the envelopes of accreting neutron stars. Detailed observations of these phenomena have prompted numerous studies in theoretical astrophysics and experimental nuclear physics since their
Type I X-ray bursts are thermonuclear explosions on the neutron star (NS) surface by mass accretion from a companion star. Observation of X-ray bursts provides valuable information on X-ray binary systems, e.g., binary parameters, the chemical compos
Many distinct classes of high-energy variability have been observed in astrophysical sources, on a range of timescales. The widest range (spanning microseconds-decades) is found in accreting, stellar-mass compact objects, including neutron stars and
We observed the Rapid Burster with Chandra when it was in the banana state that usually precedes the type-II X-ray bursting island state for which the source is particularly known. We employed the High-Energy Transmission Grating Spectrometer in comb
Classical nova explosions and type I X-ray bursts are the most frequent types of thermonuclear stellar explosions in the Galaxy. Both phenomena arise from thermonuclear ignition in the envelopes of accreting compact objects in close binary star syste