ترغب بنشر مسار تعليمي؟ اضغط هنا

HIFI Observations of Water in the Atmosphere of Comet C/2008 Q3 (Garradd)

149   0   0.0 ( 0 )
 نشر من قبل Miriam Rengel
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-resolution far-infrared and sub-millimetre spectroscopy of water lines is an important tool to understand the physical and chemical properties of cometary atmospheres. We present observations of several rotational ortho- and para-water transitions in comet C/2008 Q3 (Garradd) performed with HIFI on Herschel. These observations have provided the first detection of the 2_{12}-1_{01} (1669 GHz) ortho and 1_{11}-0_{00} (1113 GHz) para transitions of water in a cometary spectrum. In addition, the ground-state transition 1_{10}-1_{01} at 557 GHz is detected and mapped. By detecting several water lines quasi-simultaneously and mapping their emission we can constrain the excitation parameters in the coma. Synthetic line profiles are computed using excitation models which include excitation by collisions, solar infrared radiation, and radiation trapping. We obtain the gas kinetic temperature, constrain the electron density profile, and estimate the coma expansion velocity by analyzing the map and line shapes. We derive water production rates of 1.7-2.8 x 10^{28} s^{-1} over the range r_h = 1.83-1.85 AU.



قيم البحث

اقرأ أيضاً

We present observations of main-belt comet 259P/Garradd from four months prior to its 2017 perihelion passage to five months after perihelion using the Gemini North and South telescopes. The object was confirmed to be active during this period, placi ng it among seven MBCs confirmed to have recurrent activity. We find an average net pre-perihelion dust production rate for 259P in 2017 of dM/dt = 4.6+/-0.2 kg/s (assuming grain densities of rho = 2500 kg/m^3 and a mean effective particle size of a_d = 2 mm) and a best-fit start date of detectable activity of 2017 April 22+/-1, when the object was at a heliocentric distance of r_h = 1.96-/+0.03 au and a true anomaly of nu = 313.9+/-0.4 deg. We estimate the effective active fraction of 259Ps surface area to be from f_act ~ 7x10^-3 to f_act ~ 6x10^-2 (corresponding to effective active areas of A_act ~ 8x10^3 m^2 to A_act ~ 7x10^4 m^2) at the start of its 2017 active period. A comparison of estimated total dust masses measured for 259P in 2008 and 2017 shows no evidence of changes in activity strength between the two active apparitions. The heliocentric distance of 259Ps activity onset point is much smaller than those of other MBCs, suggesting that its ice reservoirs may be located at greater depths than on MBCs farther from the Sun, increasing the time needed for a solar irradiation-driven thermal wave to reach subsurface ice. We suggest that deeper ice on 259P could be a result of more rapid ice depletion caused by the objects closer proximity to the Sun compared to other MBCs.
The results of the photometric observations of comet C/2009 P1 (Garradd) performed at the 60-cm Zeiss-600 telescope of the Terskol observatory have been analyzed. During the observations, the comet was at the heliocentric and geocentric distances of 1.7 and 2.0 AU, respectively. The CCD images of the comet were obtained in the standard narrowband interference filters suggested by the International research program for comet Hale-Bopp and correspondingly designated the Hale-Bopp (HB) set. These filters were designed to isolate the BC ($lambda$4450/67 {AA}), GC ($lambda$5260/56 {AA}) and RC ($lambda$7128/58 {AA}) continua and the emission bands of C2 ($lambda$5141/118 {AA}), CN ($lambda$3870/62 {AA}), and C3 ($lambda$4062/62 {AA}). From the photometric data, the dust production rate of the comet and its color index and color excess were determined. The concentration of C2, CN, and C3 molecules and their production rates along the line of sight were estimated. The obtained results show that the physical parameters of the comet are close to the mean characteristics typicalof the dynamically new comets.
We present the results of photometry, linear spectropolarimetry, and imaging circular polarimetry ofcomet C/2009 P1 (Garradd) performed at the 6-m telescope BTA of the Special Astrophysical Observatory(Russia) equipped by the multi-mode focal reducer SCORPIO-2. The comet was observed at two epochspost-perihelion: on February 2-14, 2012 at r=1.6 au and {alpha}=36 {deg}; and on April 14-21, 2012 at r=2.2 au and {alpha}=27 deg. The spatial maps of the relative intensity and circular polarization as well as the spectral distribution of linear polarization are presented. There were two features (dust and gas tails) orientedin the solar and antisolar directions on February 2 and 14 that allowed us to determine rotation periodof the nucleus as 11.1 hours. We detected emissions of C2 , C3 , CN, CH, NH2 molecules as well as CO+ and H2O+ ions, along with a high level of the dust continuum. On February 2, the degree of linear polarization in the continuum, within the wavelength range of 0.67-0.68 {mu}m, was about 5% in the near-nucleus region up to near 6000 km and decreased to about 3% at near 40,000 km. The left-handed (negative) circular polarization at the level approximately from -0.06% to -0.4% was observed at the distances up to 3*10^4 km from the nucleus on February 14 and April 21, respectively.
We used the UltraViolet-Optical Telescope on board Swift to observe the dynamically young comet C/2009 P1 (Garradd) from a heliocentric distance of 3.5 AU pre-perihelion until 4.0 AU outbound. At 3.5 AU pre-perihelion, comet Garradd had one of the hi ghest dust-to-gas ratios ever observed, matched only by comet Hale-Bopp. The evolving morphology of the dust in its coma suggests an outburst that ended around 2.2 AU pre-perihelion. Comparing slit-based measurements and observations acquired with larger fields of view indicated that between 3 AU and 2 AU pre-perihelion a significant extended source started producing water in the coma. We demonstrate that this source, which could be due to icy grains, disappeared quickly around perihelion. Water production by the nucleus may be attributed to a constantly active source of at least 75 km$^2$, estimated to be more than 20 percent of the surface. Based on our measurements, the comet lost $4x10^{11}$ kg of ice and dust during this apparition, corresponding to at most a few meters of its surface.Even though this was likely not Garradds first passage through the inner solar system, the activity of the comet was complex and changed significantly during the time it was observed.
The D/H ratio in cometary water is believed to be an important indicator of the conditions under which icy planetesimals formed and can provide clues to the contribution of comets to the delivery of water and other volatiles to Earth. Available measu rements suggest that there is isotopic diversity in the comet population. The Herschel Space Observatory revealed an ocean-like ratio in the Jupiter-family comet 103P/Hartley 2, whereas most values measured in Oort-cloud comets are twice as high as the ocean D/H ratio. We present here a new measurement of the D/H ratio in the water of an Oort-cloud comet. HDO, H_2O, and H_2^18O lines were observed with high signal-to-noise ratio in comet C/2009 P1 (Garradd) using the Herschel HIFI instrument. Spectral maps of two water lines were obtained to constrain the water excitation. The D/H ratio derived from the measured H_2^16O and HDO production rates is 2.06+/-0.22 X 10**-4. This result shows that the D/H in the water of Oort-cloud comets is not as high as previously thought, at least for a fraction of the population, hence the paradigm of a single, archetypal D/H ratio for all Oort-cloud comets is no longer tenable. Nevertheless, the value measured in C/2009 P1 (Garradd) is significantly higher than the Earths ocean value of 1.558 X 10**-4. The measured H_2^16O/H_2^18O ratio of 523+/-32 is, however, consistent with the terrestrial value.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا