ترغب بنشر مسار تعليمي؟ اضغط هنا

Herschel-SPIRE observations of the Polaris flare : structure of the diffuse interstellar medium at the sub-parsec scale

262   0   0.0 ( 0 )
 نشر من قبل Marc-Antoine Miville-Desch\\^enes
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a power spectrum analysis of the Herschel-SPIRE observations of the Polaris flare, a high Galactic latitude cirrus cloud midway between the diffuse and molecular phases. The SPIRE images of the Polaris flare reveal for the first time the structure of the diffuse interstellar medium down to 0.01 parsec over a 10 square degrees region. These exceptional observations highlight the highly filamentary and clumpy structure of the interstellar medium even in diffuse regions of the map. The power spectrum analysis shows that the structure of the interstellar medium is well described by a single power law with an exponent of -2.7 +- 0.1 at all scales from 30 to 8 degrees. That the power spectrum slope of the dust emission is constant down to the SPIRE angular resolution is an indication that the inertial range of turbulence extends down to the 0.01 pc scale. The power spectrum analysis also allows the identification of a Poissonian component at sub-arcminute scales in agreement with predictions of the cosmic infrared background level at SPIRE wavelengths. Finally, the comparison of the SPIRE and IRAS 100 micron data of the Polaris flare clearly assesses the capability of SPIRE in maping diffuse emission over large areas.



قيم البحث

اقرأ أيضاً

The standard method of mapping the interstellar medium in a galaxy, by observing the molecular gas in the CO 1-0 line and the atomic gas in the 21-cm line, is largely limited with current telescopes to galaxies in the nearby universe. In this letter, we use SPIRE observations of the galaxies M99 and M100 to explore the alternative approach of mapping the interstellar medium using the continuum emission from the dust. We have compared the methods by measuring the relationship between the star-formation rate and the surface density of gas in the galaxies. We find the two methods give relationships with a similar dispersion, confirming that observing the continuum emission from the dust is a promising method of mapping the interstellar medium in galaxies.
We present the observations of the starburst galaxy M82 taken with the Herschel SPIRE Fourier Transform Spectrometer. The spectrum (194-671 {mu}m) shows a prominent CO rotational ladder from J = 4-3 to 13-12 emitted by the central region of M82. The fundamental properties of the gas are well constrained by the high J lines observed for the first time. Radiative transfer modeling of these high-S/N 12CO and 13CO lines strongly indicates a very warm molecular gas component at ~500 K and pressure of ~3x10^6 K cm^-3, in good agreement with the H_2 rotational lines measurements from Spitzer and ISO. We suggest that this warm gas is heated by dissipation of turbulence in the interstellar medium (ISM) rather than X-rays or UV flux from the straburst. This paper illustrates the promise of the SPIRE FTS for the study of the ISM of nearby galaxies.
We present a detailed study of the QSO-galaxy pair [SDSS J163956.35+112758.7 (zq = 0.993) and SDSS J163956.38+112802.1 (zg = 0.079)] based on observations carried out using the Giant Meterwave Radio Telescope (GMRT), the Very Large Baseline Array (VL BA), the Sloan Digital Sky Survey (SDSS) and the ESO New Technology Telescope (NTT). We show that the interstellar medium of the galaxy probed by the QSO line of sight has near-solar metallicity (12+log(O/H) = 8.47+/-0.25) and dust extinction (E(B-V) 0.83+/-0.11) typical of what is usually seen in translucent clouds. We report the detection of absorption in the lambda 6284 diffuse interstellar band (DIB) with a rest equivalent width of 1.45+/-0.20AA. Our GMRT spectrum shows a strong 21-cm absorption at the redshift of the galaxy with an integrated optical depth of 15.70+/-0.13 km/s. Follow-up VLBA observations show that the background radio source is resolved into three components with a maximum projected separation of 89 pc at the redshift of the galaxy. One of these components is too weak to provide useful HI 21-cm absorption information. The integrated HI optical depth towards the other two components are higher than that measured in our GMRT spectrum and differ by a factor 2. By comparing the GMRT and VLBA spectra we show the presence of structures in the 21-cm optical depth on parsec scales. We discuss the implications of such structures for the spin-temperature measurements in high-z damped Lyman-alpha systems. The analysis presented here suggests that this QSO-galaxy pair is an ideal target for studying the DIBs and molecular species using future observations in optical and radio wavebands.
NGC1569 has some of the most vigorous star formation among nearby galaxies. It hosts two super star clusters (SSCs) and has a higher star formation rate (SFR) per unit area than other starburst dwarf galaxies. Extended emission beyond the galaxys opt ical body is observed in warm and hot ionised and atomic hydrogen gas; a cavity surrounds the SSCs. We aim to understand the impact of the massive star formation on the surrounding interstellar medium in NGC1569 through a study of its stellar and dust properties. We use Herschel and ancillary multiwavelength observations, from the ultraviolet to the submillimeter regime, to construct its spectral energy distribution, which we model with magphys on ~300pc scales at the SPIRE250 {mu}m resolution. The multiwavelength morphology shows low levels of dust emission in the cavity, and a concentration of several dust knots in its periphery. The extended emission seen in the ionised and neutral hydrogen observations is also present in the far-infrared emission. The dust mass is higher in the periphery of the cavity, driven by ongoing star formation and dust emission knots. The SFR is highest in the central region, while the specific SFR is more sensitive to the ongoing star formation. The region encompassing the cavity and SSCs contains only 12 per cent of the dust mass of the central starburst, in accord with other tracers of the interstellar medium. The gas-to-dust mass ratio is lower in the cavity and fluctuates to higher values in its periphery.
140 - Keith T. Smith 2013
We present observations which probe the small-scale structure of the interstellar medium using diffuse interstellar bands (DIBs). Towards HD 168075/6 in the Eagle Nebula, significant differences in DIB absorption are found between the two lines of si ght, which are separated by 0.25 pc, and {lambda}5797 exhibits a velocity shift. Similar data are presented for four stars in the {mu} Sgr system. We also present a search for variations in DIB absorption towards {kappa} Vel, where the atomic lines are known to vary on scales of ~10 AU. Observations separated by ~9 yr yielded no evidence for changes in DIB absorption strength over this scale, but do reveal an unusual DIB spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا