ترغب بنشر مسار تعليمي؟ اضغط هنا

Herschel images of NGC 6720: H2 formation on dust grains

152   0   0.0 ( 0 )
 نشر من قبل Peter A. M. van Hoof
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Herschel PACS and SPIRE images have been obtained of NGC 6720 (the Ring Nebula). This is an evolved planetary nebula with a central star that is currently on the cooling track, due to which the outer parts of the nebula are recombining. From the PACS and SPIRE images we conclude that there is a striking resemblance between the dust distribution and the H2 emission, which appears to be observational evidence that H2 forms on grain surfaces. We have developed a photoionization model of the nebula with the Cloudy code which we used to determine the physical conditions of the dust and investigate possible formation scenarios for the H2. We conclude that the most plausible scenario is that the H2 resides in high density knots which were formed after the recombination of the gas started when the central star entered the cooling track. Hydrodynamical instabilities due to the unusually low temperature of the recombining gas are proposed as a mechanism for forming the knots. H2 formation in the knots is expected to be substantial after the central star underwent a strong drop in luminosity about one to two thousand years ago, and may still be ongoing at this moment, depending on the density of the knots and the properties of the grains in the knots.

قيم البحث

اقرأ أيضاً

Molecules with an amide functional group resemble peptide bonds, the molecular bridges that connect amino acids, and may thus be relevant in processes that lead to the formation of life. In this study, the solid state formation of some of the smalles t amides is investigated in the laboratory. To this end, CH$_{4}$:HNCO ice mixtures at 20 K are irradiated with far-UV photons, where the radiation is used as a tool to produce the radicals required for the formation of the amides. Products are identified and investigated with infrared spectroscopy and temperature programmed desorption mass spectrometry. The laboratory data show that NH$_{2}$CHO, CH$_{3}$NCO, NH$_{2}$C(O)NH$_{2}$, CH$_{3}$C(O)NH$_{2}$ and CH$_{3}$NH$_{2}$ can simultaneously be formed. The NH$_{2}$CO radical is found to be key in the formation of larger amides. In parallel, ALMA observations towards the low-mass protostar IRAS 16293-2422B are analysed in search of CH$_{3}$NHCHO (N-methylformamide) and CH$_{3}$C(O)NH$_{2}$ (acetamide). CH$_{3}$C(O)NH$_{2}$ is tentatively detected towards IRAS 16293-2422B at an abundance comparable with those found towards high-mass sources. The combined laboratory and observational data indicates that NH$_{2}$CHO and CH$_{3}$C(O)NH$_{2}$ are chemically linked and form in the ice mantles of interstellar dust grains. A solid-state reaction network for the formation of these amides is proposed.
We have been able to compare with astrometric precision AstroDrizzle processed images of NGC 6720 (the Ring Nebula) made using two cameras on the Hubble Space Telescope. The time difference of the observations was 12.925 yrs. This large time-base all owed determination of tangential velocities of features within this classic planetary nebula. Individual features were measured in [N II] images as were the dark knots seen in silhouette against background nebular [O III] emission. An image magnification and matching technique was also used to test the accuracy of the usual assumption of homologous expansion. We found that homologous expansion does apply, but the rate of expansion is greater along the major axis of the nebula, which is intrinsically larger than the minor axis. We find that the dark knots expand more slowly that the nebular gas, that the distance to the nebula is 720 pc +/-30%, and the dynamic age of the Ring Nebula is about 4000 yrs. The dynamic age is in agreement with the position of the central star on theoretical curves for stars collapsing from the peak of the Asymptotic Giant Branch to being white dwarfs.
We analyse Herschel/SPIRE images of the edge-on spiral galaxy NGC 891 at 250, 350 and 500 micron. Using a 3D radiative transfer model we confirm that the dust has a radial fall-off similar to the stellar disk. The dust disk shows a break at about 12 kpc from the center, where the profile becomes steeper. Beyond this break, emission can be traced up to 90% of the optical disk in the NE side. On the SW, we confirm dust emission associated with the extended, asymmetric HI disk, previously detected by the Infrared Space Observatory (ISO). This emission is marginally consistent with the large diffuse dust disk inferred from radiative transfer fits to optical images. No excess emission is found above the plane beyond that of the thin, unresolved, disk.
56 - O.Biham , I.Furman , N.Katz 1998
An analysis of the kinetics of H2 formation on interstellar dust grains is presented using rate equations. It is shown that semi-empirical expressions that appeared in the literature represent two different physical regimes. In particular, it is show n that the expression given by Hollenbach, Werner and Salpeter [ApJ, 163, 165 (1971)] applies when high flux, or high mobility, of H atoms on the surface of a grain, makes it very unlikely that H atoms evaporate before they meet each other and recombine. The expression of Pirronello et al. [ApJ, 483, L131 (1997)] -- deduced on the basis of accurate measurements on realistic dust analogue -- applies to the opposite regime (low coverage and low mobility). The implications of this analysis for the understanding of the processes dominating in the Interstellar Medium are discussed.
Context. Water together with O2 are important gas phase ingredients to cool dense gas in order to form stars. On dust grains, H2 O is an important constituent of the icy mantle in which a complex chemistry is taking place, as revealed by hot core obs ervations. The formation of water can occur on dust grain surfaces, and can impact gas phase composition. Aims. The formation of molecules such as OH, H2 O, HO2, H2 O2, as well as their deuterated forms and O2 and O3 is studied in order to assess how the chemistry varies in different astrophysical environments, and how the gas phase is affected by grain surface chemistry. Methods. We use Monte Carlo simulations to follow the formation of molecules on bare grains as well as the fraction of molecules released into the gas phase. We consider a surface reaction network, based on gas phase reactions, as well as UV photo-dissociation of the chemical species. Results. We show that grain surface chemistry has a strong impact on gas phase chemistry, and that this chemistry is very different for different dust grain temperatures. Low temperatures favor hydrogenation, while higher temperatures favor oxygenation. Also, UV photons dissociate the molecules on the surface, that can reform subsequently. The formation-destruction cycle increases the amount of species released into the gas phase. We also determine the time scales to form ices in diffuse and dense clouds, and show that ices are formed only in shielded environments, as supported by observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا