ترغب بنشر مسار تعليمي؟ اضغط هنا

Spitzer Secondary Eclipses of WASP-18b

134   0   0.0 ( 0 )
 نشر من قبل Sarah Nymeyer
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The transiting exoplanet WASP-18b was discovered in 2008 by the Wide Angle Search for Planets (WASP) project. The Spitzer Exoplanet Target of Opportunity Program observed secondary eclipses of WASP-18b using Spitzers Infrared Array Camera (IRAC) in the 3.6 micron and 5.8 micron bands on 2008 December 20, and in the 4.5 micron and 8.0 micron bands on 2008 December 24. We report eclipse depths of 0.30 +/- 0.02%, 0.39 +/- 0.02%, 0.37 +/- 0.03%, 0.41 +/- 0.02%, and brightness temperatures of 3100 +/- 90, 3310 +/- 130, 3080 +/- 140 and 3120 +/- 110 K in order of increasing wavelength. WASP-18b is one of the hottest planets yet discovered - as hot as an M-class star. The planets pressure-temperature profile most likely features a thermal inversion. The observations also require WASP-18b to have near-zero albedo and almost no redistribution of energy from the day-side to the night side of the planet.



قيم البحث

اقرأ أيضاً

It is well-established that the magnitude of the incident stellar flux is the single most important factor in determining the day-night temperature gradients and atmospheric chemistries of short-period gas giant planets. However it is likely that oth er factors, such as planet-to-planet variations in atmospheric metallicity, C/O ratio, and cloud properties, also contribute to the observed diversity of infrared spectra for this population of planets. In this study we present new 3.6 and 4.5 micron secondary eclipse measurements for five transiting gas giant planets: HAT-P-5b, HAT-P-38b, WASP-7b, WASP-72b, and WASP-127b. We detect eclipses in at least one bandpass for all five planets and confirm circular orbits for all planets except for WASP-7b, which shows evidence for a non-zero eccentricity. Building on the work of Garhart et al. (2020), we place these new planets into a broader context by comparing them with the sample of all planets with measured Spitzer secondary eclipses. We find that incident flux is the single most important factor for determining the atmospheric chemistry and circulation patterns of short-period gas giant planets. Although we might also expect surface gravity and host star metallicity to play a secondary role, we find no evidence for correlations with either of these two variables.
Previous secondary eclipse observations of the hot Jupiter Qatar-1b in the Ks band suggest that it may have an unusually high day side temperature, indicative of minimal heat redistribution. There have also been indications that the orbit may be slig htly eccentric, possibly forced by another planet in the system. We investigate the day side temperature and orbital eccentricity using secondary eclipse observations with Spitzer. We observed the secondary eclipse with Spitzer/IRAC in subarray mode, in both 3.6 and 4.5 micron wavelengths. We used pixel-level decorrelation to correct for Spitzers intra-pixel sensitivity variations and thereby obtain accurate eclipse depths and central phases. Our 3.6 micron eclipse depth is 0.149 +/- 0.051% and the 4.5 micron depth is 0.273 +/- 0.049%. Fitting a blackbody planet to our data and two recent Ks band eclipse depths indicates a brightness temperature of 1506 +/- 71K. Comparison to model atmospheres for the planet indicates that its degree of longitudinal heat redistribution is intermediate between fully uniform and day side only. The day side temperature of the planet is unlikely to be as high (1885K) as indicated by the ground-based eclipses in the Ks band, unless the planets emergent spectrum deviates strongly from model atmosphere predictions. The average central phase for our Spitzer eclipses is 0.4984 +/- 0.0017, yielding e cos(omega) = -0.0028 +/- 0.0027. Our results are consistent with a circular orbit, and we constrain e cos(omega) much more strongly than has been possible with previous observations.
We present new eclipse observations for one of the hottest hot Jupiters WASP-18b, for which previously published data from HST WFC3 and Spitzer have led to radically conflicting conclusions about the composition of this planets atmosphere. We measure eclipse depths of $0.15pm0.02%$ at $Ks$ and $0.07pm0.01%$ at $z$ bands. Using the VSTAR line-by-line radiative transfer code and both these new observations with previously published data, we derive a new model of the planetary atmosphere. We have varied both the metallicity and C/O ratio in our modelling, and find no need for the extreme metallicity suggested by Sheppard et al.(2017). Our best fitting models slightly underestimate the emission at $z$ band and overestimate the observed flux at $Ks$-band. To explain these discrepancies, we examine the impact on the planetary emission spectrum of the presence of several types of hazes which could form on the night-side of the planet. Our $Ks$ band eclipse flux measurement is lower than expected from clear atmosphere models and this could be explained by a haze particles larger than 0.2 $mu$m with the optical properties of Al$_{2}$O$_{3}$, CaTiO$_{3}$ or MgSiO$_{3}$. We find that $z$ band measurements are important for understanding the contribution of photochemical hazes with particles smaller than 0.1 $mu$m at the top of the atmosphere.
We present photometry of the giant extrasolar planet WASP-4b at 3.6 and 4.5 micron taken with the Infrared Array Camera on board the Spitzer Space Telescope as part of Spitzers extended warm mission. We find secondary eclipse depths of 0.319+/-0.031% and 0.343+/-0.027% for the 3.6 and 4.5 micron bands, respectively and show model emission spectra and pressure-temperature profiles for the planetary atmosphere. These eclipse depths are well fit by model emission spectra with water and other molecules in absorption, similar to those used for TrES-3 and HD 189733b. Depending on our choice of model, these results indicate that this planet has either a weak dayside temperature inversion or no inversion at all. The absence of a strong thermal inversion on this highly irradiated planet is contrary to the idea that highly irradiated planets are expected to have
We present {em Spitzer} secondary-eclipse observations of the hot Jupiter HAT-P-13 b in the 3.6 {micron} and 4.5 {micron} bands. HAT-P-13 b inhabits a two-planet system with a configuration that enables constraints on the planets second Love number, math{ksb{2}}, from precise eccentricity measurements, which in turn constrains models of the planets interior structure. We exploit the direct measurements of math{e cos omega} from our secondary-eclipse data and combine them with previously published radial velocity data to generate a refined model of the planets orbit and thus an improved estimate on the possible interval for math{ksb{2}}. We report eclipse phases of math{0.49154 pm 0.00080} and math{0.49711 pm 0.00083} and corresponding math{e cos omega} estimates of math{-0.0136 pm 0.0013} and math{-0.0048 pm 0.0013}. Under the assumptions of previous work, our estimate of math{ksb{2}} of 0.81 {pm} 0.10 is consistent with the lower extremes of possible core masses found by previous models, including models with no solid core. This anomalous result challenges both interior models and the dynamical assumptions that enable them, including the essential assumption of apsidal alignment. We also report eclipse depths of 0.081% {pm} 0.008% in the 3.6 {micron} channel and 0.088 % {pm} 0.028 % in the 4.5 {micron} channel. These photometric results are non-uniquely consistent with solar-abundance composition without any thermal inversion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا