ترغب بنشر مسار تعليمي؟ اضغط هنا

Using HERA Data to Determine the Infrared Behaviour of the BFKL Amplitude

43   0   0.0 ( 0 )
 نشر من قبل Graeme Watt
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We determine the infrared behaviour of the BFKL forward amplitude for gluon-gluon scattering. Our approach, based on the discrete pomeron solution, leads to an excellent description of the new combined inclusive HERA data at low values of x (<0.01) and at the same time determines the unintegrated gluon density inside the proton, for squared transverse momenta of the gluon less than 100 GeV^2. The phases of this amplitude are sensitive to the non-perturbative gluonic dynamics and could be sensitive to the presence of Beyond-the-Standard-Model particles at very high energies.

قيم البحث

اقرأ أيضاً

We analyse here in LO the physical properties of the Green function solution for the BFKL equation. We show that the solution obeys the orthonormality conditions in the physical region and fulfills the completeness requirements. The unintegrated gluo n density is shown to consists of a set of few poles with parameters which could be determined by comparison with the DIS data of high precision.
The effects of the first nonlinear corrections to the DGLAP evolution equations are studied by using the recent HERA data for the structure function $F_2(x,Q^2)$ of the free proton and the parton distributions from CTEQ5L and CTEQ6L as a baseline. By requiring a good fit to the H1 data, we determine initial parton distributions at $Q_0^2=1.4$ GeV$^2$ for the nonlinear scale evolution. We show that the nonlinear corrections improve the agreement with the $F_2(x,Q^2)$ data in the region of $xsim 3cdot 10^{-5}$ and $Q^2sim 1.5$ GeV$^2$ without paying the price of obtaining a worse agreement at larger values of $x$ and $Q^2$. For the gluon distribution the nonlinear effects are found to play an increasingly important role at $xlsim 10^{-3}$ and $Q^2lsim10$ GeV$^2$, but rapidly vanish at larger values of $x$ and $Q^2$. Consequently, contrary to CTEQ6L, the obtained gluon distribution at $Q^2=1.4$ GeV$^2$ shows a power-like growth at small $x$. Relative to the CTEQ6L gluons, an enhancement up to a factor $sim6$ at $x=10^{-5}$, $Q_0^2=1.4$ GeV$^2$ reduces to a negligible difference at $Q^2gsim 10$ GeV$^2$.
56 - Victor T. Kim 1999
The next-to-leading order (NLO) corrections to the BFKL equation in the BLM optimal scale setting are briefly discussed. A striking feature of the BLM approach is rather weak Q^2-dependence of the Pomeron intercept, which might indicate an approximat e conformal symmetry of the equation. An application of the NLO BFKL resummation for the virtual gamma-gamma total cross section shows a good agreement with recent L3 data at CERN LEP2 energies.
It has been pointed out by Gronau and Rosner that the angle gamma of the unitarity triangle could be determined by combining future results on B_s and B_d decays to K pi. Here we show that it is important to include in the analysis the information on the phase beta which will be determined in the near future. Omitting this information could lead to an error as large as 8 degrees in gamma.
112 - G.Altarelli , J.Ellis , S.Lola 1997
We explore interpretations of the anomaly observed by H1 and ZEUS at HERA in deep-inelastic e^+ p scattering at very large Q^2. We discuss the possibilities of new effective interactions and the production of a narrow state of mass 200 GeV with lepto quark couplings. We compare these models with the measured Q^2 distributions: for the contact terms, constraints from LEP2 and the Tevatron allow only a few choices of helicity and flavour structure that could roughly fit the HERA data. The data are instead quite consistent with the Q^2 distribution expected from a leptoquark state. We study the production cross sections of such a particle at the Tevatron and at HERA. The absence of a signal at the Tevatron disfavours the likelihood that any such leptoquark decays only into e^+ q. We then focus on the possibility that the leptoquark is a squark with R-violating couplings. In view of the present experimental limits on such couplings, the most likely production channels are e^+d -> scharm_L or perhaps e^+d->stop, with e^+s->stop a more marginal possibility. Possible tests of our preferred model include the absence both of analogous events in e^- p collisions and of charged current events, and the presence of detectable cascade decays whose kinematical signatures we discuss. We also discuss the possible implications for K->pi nu nubar, neutrinoless double-beta decay, the Tevatron and for e^+ e^- ->q qbar and neutralinos at LEP2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا