ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Coupling and Gauge Invariance

130   0   0.0 ( 0 )
 نشر من قبل Laura Lopez Honorez
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a coupled dark energy-dark matter model in which the energy-momentum exchange is proportional to the Hubble expansion rate. The inclusion of its perturbation is required by gauge invariance. We derive the linear perturbation equations for the gauge invariant energy density contrast and velocity of the coupled fluids, and we determine the initial conditions. The latter turn out to be adiabatic for dark energy, when assuming adiabatic initial conditions for all the standard fluids. We perform a full Monte Carlo Markov Chain likelihood analysis of the model, using WMAP 7-year data.



قيم البحث

اقرأ أيضاً

Effective field theory (EFT) formulations of dark matter interactions have proven to be a convenient and popular way to quantify LHC bounds on dark matter. However, some of the non-renormalizable EFT operators considered do not respect the gauge symm etries of the Standard Model. We carefully discuss under what circumstances such operators can arise, and outline potential issues in their interpretation and application.
In the context of cosmological perturbation theory, we derive the second order Boltzmann equation describing the evolution of the distribution function of radiation without a specific gauge choice. The essential steps in deriving the Boltzmann equati on are revisited and extended given this more general framework: i) the polarisation of light is incorporated in this formalism by using a tensor-valued distribution function; ii) the importance of a choice of the tetrad field to define the local inertial frame in the description of the distribution function is emphasized; iii) we perform a separation between temperature and spectral distortion, both for the intensity and for polarisation for the first time; iv) the gauge dependence of all perturbed quantities that enter the Boltzmann equation is derived, and this enables us to check the correctness of the perturbed Boltzmann equation by explicitly showing its gauge-invariance for both intensity and polarization. We finally discuss several implications of the gauge dependence for the observed temperature.
193 - Adriano Di Giacomo 2010
The long standing problem is solved why the number and the location of monopoles observed in Lattice configurations depend on the choice of the gauge used to detect them, in contrast to the obvious requirement that monopoles, as physical objects, mus t have a gauge-invariant status. It is proved, by use of non-abelian Bianchi identities, that monopoles are indeed gauge-invariant: the technique used to detect them has instead an efficiency which depends on the choice of the abelian projection, in a known and controllable way.
On the basis of recent results extending non-trivially the Poincare symmetry, we investigate the properties of bosonic multiplets including $2-$form gauge fields. Invariant free Lagrangians are explicitly built which involve possibly $3-$ and $4-$for m fields. We also study in detail the interplay between this symmetry and a U(1) gauge symmetry, and in particular the implications of the automatic gauge-fixing of the latter associated to a residual gauge invariance, as well as the absence of self-interaction terms.
In the absence of gauge fields, quantum field theories on the Groenewold-Moyal (GM) plane are invariant under a twisted action of the Poincare group if they are formulated following [1, 2, 3, 4, 5, 6]. In that formulation, such theories also have no UV-IR mixing [7]. Here we investigate UV-IR mixing in gauge theories with matter following the approach of [3, 4]. We prove that there is UV-IR mixing in the one-loop diagram of the S-matrix involving a coupling between gauge and matter fields on the GM plane, the gauge field being nonabelian. There is no UV-IR mixing if it is abelian.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا