ﻻ يوجد ملخص باللغة العربية
A new method for solving the time-dependent two-center Dirac equation is developed. The time-dependent Dirac wave function is represented as a sum of atomic-like Dirac-Sturm orbitals, localized at the ions. The atomic orbitals are obtained by solving numerically the finite-difference one-center Dirac and Dirac-Sturm equations with the potential which is the sum of the exact reference-nucleus potential and a monopole-approximation potential from the other nucleus. An original procedure to calculate the two-center integrals with these orbitals is proposed. The approach is tested by calculations of the charge transfer and ionization cross sections for the H(1s)--proton collisions at proton energies from 1 keV to 100 keV. The obtained results are compared with related experimental and other theoretical data. To investigate the role of the relativistic effects, the charge transfer cross sections for the Ne^{9+}(1s)--Ne^{10+} (at energies from 0.1 to 10 MeV/u) and U^{91+}(1s)--U^{92+} (at energies from 6 to 10 MeV/u) collisions are calculated in both relativistic and nonrelativistic cases.
The previously developed technique for evaluation of charge-transfer and electron-excitation processes in low-energy heavy-ion collisions [I.I. Tupitsyn et al., Phys. Rev. A 82, 042701(2010)] is extended to collisions of ions with neutral atoms. The
The probabilities of bound-free electron-positron pair creation are calculated for head-on collisions of bare uranium nuclei beyond the monopole approximation. The calculations are based on the numerical solving of the time-dependent Dirac equation i
A new approach for solving the time-dependent two-center Dirac equation is presented. The method is based on using the finite basis set of cubic Hermite splines on a two-dimensional lattice. The Dirac equation is treated in rotating reference frame.
A new relativistic method based on the Dirac equation for calculating fully differential cross sections for ionization in ion-atom collisions is developed. The method is applied to ionization of the atomic hydrogen by antiproton impact, as a non-rela
A new method for calculations of electron-positron pair-creation probabilities in low-energy heavy-ion collisions is developed. The approach is based on the propagation of all one-electron states via the numerical solving of the time-dependent Dirac