ترغب بنشر مسار تعليمي؟ اضغط هنا

Revisit on Ruling out chaos in compact binary systems

72   0   0.0 ( 0 )
 نشر من قبل Yi Xie
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Xin Wu




اسأل ChatGPT حول البحث

Full general relativity requires that chaos indicators should be invariant in various spacetime coordinate systems for a given relativistic dynamical problem. On the basis of this point, we calculate the invariant Lyapunov exponents (LEs) for one of the spinning compact binaries in the conservative second post-Newtonian (2PN) Lagrangian formulation without the dissipative effects of gravitational radiation, using the two-nearby-orbits method with projection operations and with coordinate time as an independent variable. It is found that the actual source leading to zero LEs in one paper [J. D. Schnittman and F. A. Rasio, Phys. Rev. Lett. 87, 121101 (2001)] but to positive LEs in the other [N. J. Cornish and J. Levin, Phys. Rev. Lett. 89, 179001 (2002)] does not mainly depend on rescaling, but is due to two slightly different treatments of the LEs. It takes much more CPU time to obtain the stabilizing limit values as reliable values of LEs for the former than to get the slopes (equal to LEs) of the fit lines for the latter. Due to coalescence of some of the black holes, the LEs from the former are not an adaptive indicator of chaos for comparable mass compact binaries. In this case, the invariant fast Lyapunov indicator (FLI) of two-nearby orbits, as a very sensitive tool to distinguish chaos from order, is worth recommending. As a result, we do again find chaos in the 2PN approximation through different ratios of FLIs varying with time. Chaos cannot indeed be ruled out in real binaries.



قيم البحث

اقرأ أيضاً

Binary black hole mergers are among the most violent events in the Universe, leading to extreme warping of spacetime and copious emission of gravitational radiation. Even though black holes are the most compact objects they are not necessarily the mo st efficient emitters of gravitational radiation in binary systems. The final black hole resulting from a binary black hole merger retains a significant fraction of the pre-merger orbital energy and angular momentum. A non-vacuum system can in principle shed more of this energy than a black hole merger of equivalent mass. We study these super-emitters through a toy model that accounts for the possibility that the merger creates a compact object that retains a long-lived time-varying quadrupole moment. This toy model can capture the merger of neutron stars, but it can also be used to consider more exotic compact binaries. We hope that this toy model can serve as a guide to more rigorous numerical investigations into these systems.
We propose a novel method to test the binary black hole (BBH) nature of compact binaries detectable by gravitational wave (GW) interferometers and hence constrain the parameter space of other exotic compact objects. The spirit of the test lies in the no-hair conjecture for black holes where all properties of a black hole are characterised by the mass and the spin of the black hole. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence uniquely encodes the nature of the compact binary. Thus we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.
The direct detection of gravitational waves (GWs) opened a new chapter in the modern cosmology to probe possible deviations from the general relativity (GR) theory. In the present work, we investigate for the first time the modified GW form propagati on from the inspiraling of compact binary systems within the context of $f(T)$ gravity in order to obtain new forecasts/constraints on the free parameter of the theory. First, we show that the modified waveform differs from the GR waveform essentially due to induced corrections on the GWs amplitude. Then, we discuss the forecasts on the $f(T)$ gravity assuming simulated sources of GWs as black hole binaries, neutron star binaries and black hole - neutron star binary systems, which emit GWs in the frequency band of the Advanced LIGO (aLIGO) interferometer and of the third generation Einstein Telescope (ET). We show that GWs sources detected within the aLIGO sensitivity can return estimates of the same order of magnitude of the current cosmological observations. On the other hand, detection within the ET sensitivity can improve by up to 2 orders of magnitude the current bound on the $f(T)$ gravity. Therefore, the statistical accuracy that can be achieved by future ground based GW observations, mainly with the ET detector (and planed detectors with a similar sensitivity), can allow strong bounds on the free parameter of the theory, and can be decisive to test the theory of gravitation.
Transient non-gaussian noise in gravitational wave detectors, commonly referred to as glitches, pose challenges for inference of the astrophysical properties of detected signals when the two are coincident in time. Current analyses aim towards modeli ng and subtracting the glitches from the data using a flexible, morphology-independent model in terms of sine-gaussian wavelets before the signal source properties are inferred using templates for the compact binary signal. We present a new analysis of gravitational wave data that contain both a signal and glitches by simultaneously modeling the compact binary signal in terms of templates and the instrumental glitches using sine-gaussian wavelets. The model for the glitches is generic and can thus be applied to a wide range of glitch morphologies without any special tuning. The simultaneous modeling of the astrophysical signal with templates allows us to efficiently separate the signal from the glitches, as we demonstrate using simulated signals injected around real O2 glitches in the two LIGO detectors. We show that our new proposed analysis can separate overlapping glitches and signals, estimate the compact binary parameters, and provide ready-to-use glitch-subtracted data for downstream inference analyses.
The nonlinear aspect of gravitational wave generation that produces power at harmonics of the orbital frequency, above the fundamental quadrupole frequency, is examined to see what information about the source is contained in these higher harmonics. We use an order (4/2) post-Newtonian expansion of the gravitational wave waveform of a binary system to model the signal seen in a spaceborne gravitational wave detector such as the proposed LISA detector. Covariance studies are then performed to determine the ultimate accuracy to be expected when the parameters of the source are fit to the received signal. We find three areas where the higher harmonics contribute crucial information that breaks degeneracies in the model and allows otherwise badly-correlated parameters to be separated and determined. First, we find that the position of a coalescing massive black hole binary in an ecliptic plane detector, such as OMEGA, is well-determined with the help of these harmonics. Second, we find that the individual masses of the stars in a chirping neutron star binary can be separated because of the mass dependence of the harmonic contributions to the wave. Finally, we note that supermassive black hole binaries, whose frequencies are too low to be seen in the detector sensitivity window for long, may still have their masses, distances, and positions determined since the information content of the higher harmonics compensates for the information lost when the orbit-induced modulation of the signal does not last long enough to be apparent in the data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا