ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase segregation in NaxCoO2 for large Na contents

111   0   0.0 ( 0 )
 نشر من قبل Irek Mukhamedshin
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have investigated a set of sodium cobaltates (NaxCoO2) samples with various sodium content (0.67 le x le 0.75) using Nuclear Quadrupole Resonance (NQR). The four different stable phases and an intermediate one have been recognized. The NQR spectra of 59Co allowed us to clearly differentiate the pure phase samples which could be easily distinguished from multi-phase samples. Moreover, we have found that keeping samples at room temperature in contact with humid air leads to destruction of the phase purity and loss of sodium content. The high sodium content sample evolves progressively into a mixture of the detected stable phases until it reaches the x=2/3 composition which appears to be the most stable phase in this part of phase diagram.



قيم البحث

اقرأ أيضاً

We have synthesized and characterized four different stable phases of Na ordered Na$_{x}$CoO$_{2}$, for $0.65<x<0.8$. Above 100 K they display similar Curie-Weiss susceptibilities as well as ferromagnetic $q=0$ spin fluctuations in the CoO$_{2}$ plan es revealed by $^{23}$Na NMR data. In all phases from $^{59}$Co NMR data we display evidences that the Co disproportionate already above 300 K into non magnetic Co$^{3+}$ and magnetic $approx $Co$^{3.5+}$ sites on which holes delocalize. This allows us to understand that metallic magnetism is favored for these large Na contents. Below 100 K the phases differentiate, and a magnetic order sets in only for $xgtrsim 0.75$ at $T_{N}=$22 K. We suggest that the charge order also governs the low $T$ energy scales and transverse couplings.
Crystallographic, magnetic and NMR properties of a NaxCoO2 single crystal with x~1 are presented. We identify the stoichiometric Na1CoO2 phase, which is shown to be a non-magnetic insulator, as expected for homogeneous planes of Co3+ ions with S=0. I n addition, we present evidence that, because of slight average Na deficiency, chemical and electronic phase separation leads to a segregation of Na vacancies into the well-defined, magnetic, Na0.8CoO2 phase. The importance of phase separation is discussed in the context of magnetic order for x~0.8 and the occurrence of a metal-insulator transition for x->1.
New electronic phases have been identified and placed in the (T,H) phase diagram of metallic NaxCoO2. At low Na-content (x = 0.36), the magnetic susceptibility diverges with a power law T^(-n), n<1, and shows (T,H) scaling, indicating the proximity t o a magnetic quantum phase transition. At high Na contents (x = 0.6) the mass of the quasiparticles does never diverge, but renormalizes and becomes strongly field dependent at low temperatures, forming a heavy Fermi-Liquid. Our results make superconducting NaxCoO2 a clear candidate for magnetically mediated pairing.
We present neutron scattering spectra taken from a single crystal of Na0.75CoO2, the precursor to a novel cobalt-oxide superconductor. The data contain a prominent inelastic signal at low energies (~10 meV), which is localized in wavevector about the origin of two-dimensional reciprocal space. The signal is highly dispersive, and decreases in intensity with increasing temperature. We interpret these observations as direct evidence for the existence of ferromagnetic spin fluctuations within the cobalt-oxygen layers.
56 - C.A. Marianetti , G. Kotliar , 2003
Density functional theory (DFT) within the local density approximation (LDA) is used to understand the electronic properties of Na1/3CoO2 and Na1/3CoO2(H2O)4/3, which was recently found to be superconducting1. Comparing the LDA charge density of CoO2 and the Na doped phases indicates that doping does not simply add electrons to the t2g states. In fact, the electron added in the t2g state is dressed by hole density in the eg state and electron density in the oxygen states via rehybridization. In order to fully understand this phenomenon, a simple extension of the Hubbard Hamiltonian is proposed and solved using the dynamical mean-field theory (DMFT). This simple model confirms that the rehybridization is driven by a competition between the on-site coulomb interaction and the hybridization. In addition, we find that the presence of eg-oxygen hybridization effectively screens the low energy excitations. To address the role that water plays in creating the superconducting state, we compare the LDA band structure of Na1/3CoO2 and its hydrated counterpart. This demonstrates that hydration does cause the electronic structure to become more two-dimensional.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا