ﻻ يوجد ملخص باللغة العربية
An analysis of the fluorine abundance in Galactic AGB carbon stars (24 N-type, 5 SC-type and 5 J-type) is presented. This study uses the state- of-the-art carbon rich atmosphere models and improved atomic and molecular line lists in the 2.3 {mu}m region. F abundances significantly lower are obtained in comparison to previous study in the literature. The main reason of this difference is due to molecular blends. In the case of carbon stars of SC-type, differences in the model atmospheres are also relevant. The new F enhancements are now in agreement with the most recent theoretical nucleosynthesis models in low- mass AGB stars, solving the long standing problem of F in Galactic AGB stars. Nevertheless, some SC-type carbon stars still show larger F abundances than predicted by stellar models. The possibility that these stars are of larger mass is briefly discussed.
Revised spectroscopic parameters for the HF molecule and a new CN line list in the 2.3 mu region have been recently available, allowing a revision of the F content in AGB stars. AGB carbon stars are the only observationally confirmed sources of fluor
The chemical evolution of fluorine is investigated in a sample of Milky Way red giantstars that span a significant range in metallicity from [Fe/H] $sim$ -1.3 to 0.0 dex. Fluorine abundances are derived from vibration-rotation lines of HF in high-res
We obtained high-resolution near-IR spectra of 45 AGB stars located in the Galactic bulge. The aim of the project is to determine key elemental abundances in these stars to help constrain the formation history of the bulge. A further aim is to link t
Fluorine (19F) abundances (or upper limits) are derived in six extragalactic AGB carbon stars from the HF(1-0) R9 line at 2.3358 mu in high resolution spectra. The stars belong to the Local Group galaxies LMC, SMC and Carina dwarf spheroidal, spannin
We previously explored the circumstellar effects on the Rb and Zr abundances in massive Galactic O-rich AGB stars. Here we are interested in the role of the extended atmosphere in the case of Li and Ca. Li is an important indicator of HBB while the t