ترغب بنشر مسار تعليمي؟ اضغط هنا

Atmospheric neutrino oscillations and tau neutrinos in ice

215   0   0.0 ( 0 )
 نشر من قبل Gerardo Giordano
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The main goal of the IceCube Deep Core Array is to search for neutrinos of astrophysical origins. Atmospheric neutrinos are commonly considered as a background for these searches. We show here that cascade measurements in the Ice Cube Deep Core Array can provide strong evidence for tau neutrino appearance in atmospheric neutrino oscillations. A careful study of these tau neutrinos is crucial, since they constitute an irreducible background for astrophysical neutrino detection.



قيم البحث

اقرأ أيضاً

The main goal of the IceCube Deep Core Array is to search for neutrinos of astrophysical origins. Atmospheric neutrinos are commonly considered as a background for these searches. We show that the very high statistics atmospheric neutrino data can be used to obtain precise measurements of the main oscillation parameters.
We show that the measurements of 10 GeV atmospheric neutrinos by an upcoming array of densely packed phototubes buried deep inside the IceCube detector at the South Pole can be used to determine the neutrino mass hierarchy for values of sin^2(2theta1 3) close to the present bound, if the hierarchy is normal. These results are obtained for an exposure of 100 Mton years and systematic uncertainties up to 10%.
We reconsider neutrino decay as an explanation for atmospheric neutrino observations. We show that if the mass-difference relevant to the two mixed states u_mu and u_tau is very small (< 10^{-4} eV^2), then a very good fit to the observations can b e obtained with decay of a component of u_mu to a sterile neutrino and a Majoron. We discuss how the K2K and MINOS long-baseline experiments can distinguish the decay and oscillation scenarios.
Atmospheric neutrinos travel very long distances through earth matter. It is expected that the matter effects lead to significant changes in the neutrino survival and oscillation probabilities. Initial analysis of atmospheric neutrino data by the Sup er- Kamiokande collaboration is done using the vacuum oscillation hypothesis, which provided a good fit to the data. In this work, we did a study to differentiate the effects of vacuum oscillations and matter modified oscillations in the atmospheric neutrino data. We find that magnetized iron detector, ICAL at INO, can make a 3 sigma discrimination between vacuum oscillations and matter oscillations, for both normal and inverted hierarchies, in ten years.
We consider a solution of the atmospheric neutrino problem based on oscillations of muon neutrinos to sterile neutrinos: $ u_{mu}$ $leftrightarrow$ $ u_s$. The zenith angle ($Theta$) dependences of the neutrino and upward-going muon fluxes in presenc e of these oscillations are studied. The dependences have characteristic form with two dips: at $cos Theta = -0.6 div -0.2$ and $cos Theta = -1.0 div -0.8$. The latter dip is due to parametric resonance in oscillations of neutrinos which cross the core of the earth. A comparison of predictions with data from the MACRO, Baksan and Super-Kamiokande experiments is given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا