ترغب بنشر مسار تعليمي؟ اضغط هنا

Gradient estimates for degenerate quasi-linear parabolic equations

195   0   0.0 ( 0 )
 نشر من قبل Vitali Liskevich
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For a general class of divergence type quasi-linear degenerate parabolic equations with differentiable structure and lower order coefficients form bounded with respect to the Laplacian we obtain $L^q$-estimates for the gradients of solutions, and for the lower order coefficients from a Kato-type class we show that the solutions are Lipschitz continuous with respect to the space variable.



قيم البحث

اقرأ أيضاً

For a class of divergence type quasi-linear degenerate parabolic equations with a Radon measure on the right hand side we derive pointwise estimates for solutions via nonlinear Wolff potentials.
139 - Tuoc Phan 2017
This paper studies the Sobolev regularity estimates of weak solutions of a class of singular quasi-linear elliptic problems of the form $u_t - mbox{div}[mathbb{A}(x,t,u, abla u)]= mbox{div}[{mathbf F}]$ with homogeneous Dirichlet boundary conditions over bounded spatial domains. Our main focus is on the case that the vector coefficients $mathbb{A}$ are discontinuous and singular in $(x,t)$-variables, and dependent on the solution $u$. Global and interior weighted $W^{1,p}(Omega, omega)$-regularity estimates are established for weak solutions of these equations, where $omega$ is a weight function in some Muckenhoupt class of weights. The results obtained are even new for linear equations, and for $omega =1$, because of the singularity of the coefficients in $(x,t)$-variables
For a class of singular divergence type quasi-linear parabolic equations with a Radon measure on the right hand side we derive pointwise estimates for solutions via the nonlinear Wolff potentials.
155 - Luan Hoang 2015
This paper is focused on the local interior $W^{1,infty}$-regularity for weak solutions of degenerate elliptic equations of the form $text{div}[mathbf{a}(x,u, abla u)] +b(x, u, abla u) =0$, which include those of $p$-Laplacian type. We derive an ex plicit estimate of the local $L^infty$-norm for the solutions gradient in terms of its local $L^p$-norm. Specifically, we prove begin{equation*} | abla u|_{L^infty(B_{frac{R}{2}}(x_0))}^p leq frac{C}{|B_R(x_0)|}int_{B_R(x_0)}| abla u(x)|^p dx. end{equation*} This estimate paves the way for our forthcoming work in establishing $W^{1,q}$-estimates (for $q>p$) for weak solutions to a much larger class of quasilinear elliptic equations.
We study boundary gradient estimates for second-order divergence type parabolic and elliptic systems in $C^{1,alpha}$ domains. The coefficients and data are assumed to be Holder in the time variable and all but one spatial variables. This type of sys tems arises from the problems of linearly elastic laminates and composite materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا