ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational Chern-Simons and the adiabatic limit

84   0   0.0 ( 0 )
 نشر من قبل Brendan McLellan
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Brendan McLellan




اسأل ChatGPT حول البحث

We compute the gravitational Chern-Simons term explicitly for an adiabatic family of metrics using standard methods in general relativity. We use the fact that our base three-manifold is a quasi-regular K-contact manifold heavily in this computation. Our key observation is that this geometric assumption corresponds exactly to a Kaluza-Klein Ansatz for the metric tensor on our three manifold, which allows us to translate our problem into the language of general relativity. Similar computations have been performed in a paper of Guralnik, Iorio, Jackiw and Pi (2003), although not in the adiabatic context.

قيم البحث

اقرأ أيضاً

130 - Lisa C. Jeffrey 2012
In this article we describe the relation between the Chern-Simons gauge theory partition function and the partition function defined using the symplectic action functional as the Lagrangian. We show that the partition functions obtained using these t wo Lagrangians agree, and we identify the semiclassical formula for the partition function defined using the symplectic action functional.
76 - Lisa C. Jeffrey 2012
We compute the semiclassical formulas for the partition functions obtained using two different Lagrangians: the Chern-Simons functional and the symplectic action functional.
By using the Hamilton-Jacobi [HJ] framework the three dimensional Palatini theory plus a Chern-Simons term [PCS] is analyzed. We report the complete set of $HJ$ Hamiltonians and a generalized $HJ$ differential from which all symmetries of the theory are identified. Moreover, we show that in spite of PCS Lagrangian produces Einsteins equations, the generalized $HJ$ brackets depend on a Barbero-Immirzi like parameter. In addition we complete our study by performing a canonical covariant analysis, and we construct a closed and gauge invariant two form that encodes the symplectic geometry of the covariant phase space.
73 - Brendan McLellan 2012
Chern-Simons theory on a closed contact three-manifold is studied when the Lie group for gauge transformations is compact, connected and abelian. A rigorous definition of an abelian Chern-Simons partition function is derived using the Faddeev-Popov g auge fixing method. A symplectic abelian Chern-Simons partition function is also derived using the technique of non-abelian localization. This physically identifies the symplectic abelian partition function with the abelian Chern-Simons partition function as rigorous topological three-manifold invariants. This study leads to a natural identification of the abelian Reidemeister-Ray-Singer torsion as a specific multiple of the natural unit symplectic volume form on the moduli space of flat abelian connections for the class of Sasakian three-manifolds. The torsion part of the abelian Chern-Simons partition function is computed explicitly in terms of Seifert data for a given Sasakian three-manifold.
The role played by Deligne-Beilinson cohomology in establishing the relation between Chern-Simons theory and link invariants in dimensions higher than three is investigated. Deligne-Beilinson cohomology classes provide a natural abelian Chern-Simons action, non trivial only in dimensions $4l+3$, whose parameter $k$ is quantized. The generalized Wilson $(2l+1)$-loops are observables of the theory and their charges are quantized. The Chern-Simons action is then used to compute invariants for links of $(2l+1)$-loops, first on closed $(4l+3)$-manifolds through a novel geometric computation, then on $mathbb{R}^{4l+3}$ through an unconventional field theoretic computation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا