ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase behavior of ionic liquid crystals

89   0   0.0 ( 0 )
 نشر من قبل Ludger Harnau
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bulk properties of ionic liquid crystals are investigated using density functional theory. The liquid crystal molecules are represented by ellipsoidal particles with charges located in their center or at their tails. Attractive interactions are taken into account in terms of the Gay-Berne pair potential. Rich phase diagrams involving vapor, isotropic and nematic liquid, as well as smectic phases are found. The dependence of the phase behavior on various parameters such as the length of the particles and the location of charges on the particles is studied.

قيم البحث

اقرأ أيضاً

Previous theoretical studies of calamitic (i.e., rod-like) ionic liquid crystals (ILCs) based on an effective one-species model led to indications of a novel smectic-A phase with a layer spacing being much larger than the length of the mesogenic (i.e ., liquid-crystal forming) ions. In order to rule out the possibility that this wide smectic-A phase is merely an artifact caused by the one-species approximation, we investigate an extension which accounts explicitly for cations and anions in ILCs. Our present findings, obtained by grand canonical Monte Carlo simulations, show that the phase transitions between the isotropic and the smectic-A phases of the cation-anion system are in qualitative agreement with the effective one-species model used in the preceding studies. In particular, for ILCs with mesogenes (i.e., liquid-crystal forming species) carrying charged sites at their tips, the wide smectic-A phase forms, at low temperatures and within an intermediate density range, in between the isotropic and a hexagonal crystal phase. We find that in the ordinary smectic-A phase the spatial distribution of the counterions of the mesogens is approximately uniform, whereas in the wide smectic-A phase the small counterions accumulate in between the smectic layers. Due to this phenomenology the wide smectic-A phase could be interesting for applications which hinge on the presence of conductivity channels for mobile ions.
Multicomponent systems are ubiquitous in nature and industry. While the physics of few-component liquid mixtures (i.e., binary and ternary ones) is well-understood and routinely taught in undergraduate courses, the thermodynamic and kinetic propertie s of $N$-component mixtures with $N>3$ have remained relatively unexplored. An example of such a mixture is provided by the intracellular fluid, in which protein-rich droplets phase separate into distinct membraneless organelles. In this work, we investigate equilibrium phase behavior and morphology of $N$-component liquid mixtures within the Flory-Huggins theory of regular solutions. In order to determine the number of coexisting phases and their compositions, we developed a new algorithm for constructing complete phase diagrams, based on numerical convexification of the discretized free energy landscape. Together with a Cahn-Hilliard approach for kinetics, we employ this method to study mixtures with $N=4$ and $5$ components. We report on both the coarsening behavior of such systems, as well as the resulting morphologies in three spatial dimensions. We discuss how the number of coexisting phases and their compositions can be extracted with Principal Component Analysis (PCA) and K-Means clustering algorithms. Finally, we discuss how one can reverse engineer the interaction parameters and volume fractions of components in order to achieve a range of desired packing structures, such as nested `Russian dolls and encapsulated Janus droplets.
Blue phase liquid crystals are not usually considered to exhibit a flexoelectrooptic effect, due to the polar nature of flexoelectric switching and the cubic or amorphous structure of blue phases. Here, we derive the form of the flexoelectric contrib ution to the Kerr constant of blue phases, and experimentally demonstrate and measure the separate contributions to the Kerr constant arising from flexoelectric and dielectric effects. Hence, a non-polar flexoelectrooptic effect is demonstrated in blue phase liquid crystals, which will have consequences for the engineering of novel blue-phase electrooptic technology.
187 - Erik Lascaris 2015
Recently it was shown that the WAC model for liquid silica [L. V. Woodcock, C. A. Angell, and P. Cheeseman, J. Chem. Phys. 65, 1565 (1976)] is remarkably close to having a liquid-liquid critical point (LLCP). We demonstrate that increasing the ion ch arge separates the global maxima of the response functions, while reducing the charge smoothly merges them into a LLCP; a phenomenon that might be experimentally observable with charged colloids. An analysis of the Si and O coordination numbers suggests that a sufficiently low Si/O coordination number ratio is needed to attain a LLCP.
Collective behavior widely exists in nature, ranging from the macroscopic cloud of swallows to the microscopic cloud of colloidal particles. The behavior of an individual inside the collective is distinctive from its behavior alone, as it follows its neighbors. The introduction of such collective behavior in two-dimensional (2D) materials may offer new possibilities to achieve desired but unattained properties. Here, we report a highly sensitive magneto-optic effect and transmissive magneto-coloration via introducing collective behavior into magnetic 2D material dispersions. The increase of ionic strength in the dispersion enhances the collective behavior of colloidal particles, giving rise to a magneto-optic Cotton-Mouton coefficient up to 2700 T-2m-1 which is the highest value obtained so far, being three orders of magnitude larger than other known transparent media. We also reveal linearly dependence of magneto-coloration on the concentration and hydration radius of ions. Such linear dependence and the extremely large Cotton-Mouton coefficient cooperatively allow fabrication of giant magneto-birefringent devices for color-centered visual sensing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا