ترغب بنشر مسار تعليمي؟ اضغط هنا

Lattice anomalies in the FeAs$_{rm 4}$ tetrahedra of the NdFeAsO$_{rm 0.85}$ superconductor that disappear at T$_{rm c}$

67   0   0.0 ( 0 )
 نشر من قبل Eirini Siranidi
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High resolution synchrotron X-ray powder diffraction (SXRPD) was used to study the temperature dependence of the oxygen deficient NdFeAsO$_{0.85}$ superconducting compound. By employing a dense temperature sampling we have managed to reveal unnoticed structural modifications that start around $sim$180K, and disappear at the transition temperature. The data show minor changes of the structural characteristics in the Nd-O charge reservoir layer while in the superconducting Fe-As layer the FeAs$_{4}$ tetrahedron shows gradual modifications below $sim$180K, which suddenly disappear at T$_{rm c}$ strongly indicating a connection with superconductivity.


قيم البحث

اقرأ أيضاً

Polycrystalline samples of FeSe$_{0.5}$Te$_{0.5}$ were synthesized using a conventional solid-state reaction method. The onset of bulk superconductivity transition was confirmed by SQUID magnetometry at 12.5~K. $^{57}$Fe Mossbauer spectra in transmis sion geometry were recorded at temperatures between 6.0 and 320 K. Both the isomer shift and the total absorption started to drop about $T_c$, indicating a softening of the lattice. The drop is estimated to correspond to at least 60~K from the original Debye temperature $theta_{rm D}approx 460$~K. Seebeck measurements indicate that the samples are $n$-type conductors at low temperatures with a cross-over to $p$-type conductivity around 135 K. The zero Seebeck coefficient is seen below $10.6$~K.
The recent realisations of hydrogen doped $Ln$FeAsO ($Ln$=Nd and Sm) superconducting epitaxial thin films call for further investigation of their structural and electrical transport properties. Here, we report on the microstructure of a NdFeAs(O,H) e pitaxial thin film and its temperature, field, and orientation dependencies of the resistivity and the critical current density $J_{rm c}$. The superconducting transition temperature $T_{rm c}$ is comparable to NdFeAs(O,F). Transmission electron microscopy investigation supported that hydrogen is homogenously substituted for oxygen. A high self-field $J_{rm c}$ of over 10 MA/cm$^2$ was recorded at 5 K, which is likely to be caused by a short London penetration depth. The anisotropic Ginzburg-Landau scaling for the angle dependence of $J_{rm c}$ yielded temperature-dependent scaling parameters $gamma_{rm J}$ that decreased from 1.6 at 30 K to 1.3 at 5 K. This is opposite to the behaviour of NdFeAs(O,F). Additionally, $gamma_{rm J}$ of NdFeAs(O,H) is smaller than that of NdFeAs(O,F). Our results indicate that heavily electron doping by means of hydrogen substitution for oxygen in $Ln$FeAsO is highly beneficial for achieving high $J_{rm c}$ with low anisotropy without compromising $T_{rm c}$, which is favourable for high-field magnet applications.
109 - Tetsuya Takimoto 2002
The mechanism of superconductivity in ${rm Sr}_{2}{rm RuO}_{4}$ is studied using a degenerate Hubbard model within the weak coupling theory. When the system approaches the orbital instability which is realized due to increasing the on-site Coulomb in teraction between the electrons in the different orbitals, it is shown that the triplet superconductivity appears. This superconducting mechanism is only available in orbitally degenerate systems with multiple Fermi surfaces.
We performed systematic angle-resolved photoemission spectroscopy measurements $in$-$situ$ on $T$-${rm La}_{2-x}{rm Ce}_xrm {CuO}_{4pmdelta}$ (LCCO) thin films over the extended doping range prepared by the refined ozone/vacuum annealing method. Elec tron doping level ($n$), estimated from the measured Fermi surface volume, varies from 0.05 to 0.23, which covers the whole superconducting dome. We observed an absence of the insulating behavior around $n sim$ 0.05 and the Fermi surface reconstruction shifted to $n sim$ 0.11 in LCCO compared to that of other electron-doped cuprates at around 0.15, suggesting that antiferromagnetism is strongly suppressed in this material. The possible explanation may lie in the enhanced -$t$ /$t$ in LCCO for the largest $rm{La^{3+}}$ ionic radius among all the Lanthanide elements.
83 - S.Kundu , V.Tripathi 2017
We study the effect of Hunds splitting of repulsive interactions on electronic phase transitions in the multiorbital topological crystalline insulator Pb$_{1-x}$Sn$_{x}$Te, when the chemical potential is tuned to the vicinity of low-lying Type-II Van Hove singularities. Nontrivial Berry phases associated with the Bloch states impart momentum-dependence to electron interactions in the relevant band. We use a multipatch parquet renormalization group (RG) analysis for studying the competition of different electronic phases, and find that if the dominant fixed-point interactions correspond to antiparallel spin configurations, then a chiral $p$-wave Fulde-Ferrell-Larkin-Ovchinnikov(FFLO) state is favored, otherwise, none of the commonly encountered electronic instabilities occur within the one-loop parquet RG approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا