ﻻ يوجد ملخص باللغة العربية
We extend our work on QCD thermodynamics with 2+1 quark flavors at nonzero chemical potential to finer lattices with $N_t=6$. We study the equation of state and other thermodynamic quantities, such as quark number densities and susceptibilities, and compare them with our previous results at $N_t=4$. We also calculate the effects of the addition of the charm and bottom quarks on the equation of state at zero and nonzero chemical potential. These effects are important for cosmological studies of the early Universe.
We present results for the QCD equation of state, quark densities and susceptibilities at nonzero chemical potential, using 2+1 flavor asqtad ensembles with $N_t=4$. The ensembles lie on a trajectory of constant physics for which $m_{ud}approx0.1m_s$
Lattice QCD at finite chemical potential is difficult due to the sign problem. We use stochastic quantization and complex Langevin dynamics to study this issue. First results for QCD in the hopping expansion are encouraging. U(1) and SU(3) one link m
We investigate the properties of QCD at finite isospin chemical potential at zero and non-zero temperatures. This theory is not affected by the sign problem and can be simulated using Monte-Carlo techniques. With increasing isospin chemical potential
Using combined strong coupling and hopping parameter expansions, we derive an effective three-dimensional theory from thermal lattice QCD with heavy Wilson quarks. The theory depends on traced Polyakov loops only and correctly reflects the centre sym
In this paper we test the complex Langevin algorithm for numerical simulations of a random matrix model of QCD with a first order phase transition to a phase of finite baryon density. We observe that a naive implementation of the algorithm leads to p