ترغب بنشر مسار تعليمي؟ اضغط هنا

A note on the CDF high-p_t charged particle excess

96   0   0.0 ( 0 )
 نشر من قبل Matteo Cacciari
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

It has recently been pointed out that CDF data for the cross section of high-p_t charged particles show an excess of up to three orders of magnitude over QCD predictions, a feature tentatively ascribed to possible violations of factorisation. We observe that for p_t > 80 GeV the measured charged-particle cross sections become of the same order as jet cross sections. Combining this information with data on charged particle distributions within jets allows us to rule out the hypothesis that the CDF data could be interpreted in terms of QCD factorisation violation. We also comment on the difficulty of interpreting the excess in terms of new physics scenarios.



قيم البحث

اقرأ أيضاً

Non-local extensions of the Standard Model with a non-locality scale $Lambda_{NL}$ have the effect of smearing the pointlike vertices of the Standard Model. At energies significantly lower than $Lambda_{NL}$ vertices appear pointlike, while beyond th is scale all beta functions vanish and all couplings approach a fixed point leading to scale invariance. Non-local SM extensions are ghost free, with the non-locality scale serving as an effective cutoff to radiative corrections of the Higgs mass. We argue that the data expected to be collected at the LHC phase 2 will have a sensitivity to non-local effects originating from a non-locality scale of a few TeV. Using an infinite derivative prescription, we study modifications to heavy vector-boson cross sections that can lead to an enhanced production of boosted Higgs bosons in a region of the kinematic phase space where the SM background is very small.
The recent excess observed by CDF in $B^0_s to mu^{+} mu^{-}$ is interpreted in terms of a possible supersymmetric origin. An analysis is given of the parameter space of mSUGRA and non-universal SUGRA models under the combined constraints from LHC-7 with 165 pb$^{-1}$ of integrated luminosity, under the new XENON-100 limits on the neutralino-proton spin independent cross section and under the CDF $B^0_s to mu^{+} mu^{-}$ 90% C.L. limit reported to arise from an excess number of dimuon events. It is found that the predicted value of the branching ratio $B^0_s to mu^{+} mu^{-}$ consistent with all the constraints contains the following set of NLSPs: chargino, stau, stop or CP odd (even) Higgs. The lower bounds of sparticles, including those from the LHC, XENON and CDF $B^0_sto mu^+mu^-$ constraint, are exhibited and the shift in the allowed range of sparticle masses arising solely due to the extra constraint from the CDF result is given. It is pointed out that the two sided CDF 90% C.L. limit puts upper bounds on sparticle masses. An analysis of possible signatures for early discovery at the LHC is carried out corresponding to the signal region in $B^0_s to mu^{+} mu^{-}$. Implications of GUT-scale non-universalities in the gaugino and Higgs sectors are discussed. If the excess seen by the CDF Collaboration is supported by further data from LHCb or D0, this new result could be a harbinger for the discovery of supersymmetry.
We present a systematic survey of possible short-distance new-physics effects in (semi)leptonic charged- and neutral-current charmed meson decays. Using the Standard Model Effective Field Theory (SMEFT) to analyze the most relevant experimental data at low and high energies, we demonstrate a striking complementarity between charm decays and high invariant mass lepton tails at the LHC. Interestingly enough, high-$p_T$ Drell-Yan data offer competitive constraints on most new physics scenarios. Furthermore, the full set of correlated constraints from $K$, $pi$ and $tau$ decays imposed by $SU(2)_L$ gauge invariance is considered. The bounds from $D_{(s)}$ decays, high-$p_T$ lepton tails and $SU(2)_L$ relations chart the space of the SMEFT affecting semi(leptonic) charm flavor transitions.
We investigate the crossing-symmetry relation between $bto ctau^-bar u$ decay and $bbar cto tau^-bar u$ scattering to derive direct correlations of New Physics in semi-tauonic $B$-meson decays and the mono-tau signature at the LHC ($pptotau_h X$ + ME T). Using an exhaustive set of effective operators and heavy mediators we find that the current ATLAS and CMS data constrain scenarios addressing anomalies in $B$-decays. Pure tensor solutions, completed by leptoquark, and right-handed solutions, completed by $W^prime_R$ or leptoquark, are challenged by our analysis. Furthermore, the sensitivity that will be achieved in the high-luminosity phase of the LHC will probe $all$ the possible scenarios that explain the anomalies. Finally, we note that the LHC is also competitive in the $bto u$ transitions and bounds in some cases are currently better than those from $B$ decays.
231 - Zhangbu Xu 2008
I will present an overview of identified particle spectra at high $p_T$ ($p_T{}^{>}_{sim}$ 5 GeV/$c$) in both p+p collisions and AA collisions at RHIC. In p+p collisions, summary of particle ratios of K, $eta$, $omega$, $rho$, $phi$, $p$, $bar{p}$, $ Lambda$ and heavy-flavor (open charm, $J/Psi$) to $pi$ at high-pt will be compiled and compared to the ratios of integrated yields. The spectra are used in $x_t$ scaling study and compared to pQCD calculations. These will help us establish particle composition in jets and the quark and gluon contributions to hadron production at high $p_T$. Similar jet chemistry has been extracted in Au+Au data in search for a quantitative measure of color charge dependence of jet energy loss.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا