ﻻ يوجد ملخص باللغة العربية
We conduct experiments on two-dimensional packings of colloidal thermosensitive hydrogel particles whose packing fraction can be tuned above the jamming transition by varying the temperature. By measuring displacement correlations between particles, we extract the vibrational properties of a corresponding shadow system with the same configuration and interactions, but for which the dynamics of the particles are undamped. The vibrational spectrum and the nature of the modes are very similar to those predicted for zero-temperature idealized sphere models and found in atomic and molecular glasses; there is a boson peak at low frequency that shifts to higher frequency as the system is compressed above the jamming transition.
We investigate the stress relaxation behavior on the application of step strains to aging aqueous suspensions of the synthetic clay Laponite. The stress exhibits a two-step decay, from which the slow relaxation modes are extracted as functions of the
We image local structural rearrangements in soft colloidal glasses under small periodic perturbations induced by thermal cycling. Local structural entropy $S_{2}$ positively correlates with observed rearrangements in colloidal glasses. The high $S_{2
We numerically study the evolution of the vibrational density of states $D(omega)$ of zero-temperature glasses when their kinetic stability is varied over an extremely broad range, ranging from poorly annealed glasses obtained by instantaneous quench
The rheological response, in particular the non-linear response, to oscillatory shear is experimentally investigated in colloidal glasses. The glasses are highly concentrated binary hard-sphere mixtures with relatively large size disparities. For a s
We report results of dynamic light scattering measurements of the coherent intermediate scattering function (ISF) of glasses of hard spheres for several volume fractions and a range of scattering vectors around the primary maximum of the static struc