ﻻ يوجد ملخص باللغة العربية
Radio galaxies with a projected linear size > 1 Mpc are classified as giant radio sources. According to the current interpretation these are old sources which have evolved in a low-density ambient medium. Since radiative losses are negligible at low frequency, extending spectral ageing studies in this frequency range will allow to determine the zero-age electron spectrum injected and then to improve the estimate of the synchrotron age of the source. We present Very Large Array images at 74 MHz and 327 MHz of two giant radio sources: 3C35 and 3C223. We performed a spectral study using 74, 327, 608 and 1400 GHz images. The spectral shape is estimated in different positions along the source. The radio spectrum follows a power-law in the hot-spots, while in the inner region of the lobe the shape of the spectrum shows a curvature at high frequencies. This steepening is in agreement with synchrotron aging of the emitting relativistic electrons. In order to estimate the synchrotron age of the sources, the spectra have been fitted with a synchrotron model of emission. Using the models, we find that 3C35 is an old source of about 143 Myr, while 3C223 is a younger source of 72 Myr.
We present the results of multifrequency observations of two asymmetric, Mpc-scale radio sources with the Giant Metrewave Radio Telescope (GMRT) and the Very Large Array (VLA). The radio luminosity of these two sources, J1211+743 and J1918+742, are i
We present new Giant Metrewave Radio Telescope observations at 235 MHz and 610 MHz of 18 X-ray bright galaxy groups. These observations are part of an extended project, presented here and in future papers, which combines low-frequency radio and X-ray
In order to understand the possible mechanisms of recurrent jet activity in radio galaxies and quasars, which are still unclear, we have identified such sources with a large range of linear sizes (220 $-$ 917 kpc), and hence time scales of episodic a
Spectral index images can be used to constraint the energy spectrum of relativistic electrons and magnetic field distribution in radio halos and relics, providing useful information to understand their formation, evolution and connection to cluster m
We present low-frequency observations with the Giant Metrewave Radio Telescope (GMRT) of a sample of giant radio sources (GRSs), and high-frequency observations of three of these sources with the Very Large Array (VLA). From multifrequency observatio