ترغب بنشر مسار تعليمي؟ اضغط هنا

A study of a NLO matrix element generator for Wgamma and matching scheme for NLO events and PYTHIA parton shower

330   0   0.0 ( 0 )
 نشر من قبل Devdatta Majumder
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We compare a NLO W gamma matrix element generator with the leading order calculation in Pythia . A matching scheme between a next-to-leading order W gamma matrix element generator by Baur et. al. and the Pythia parton shower is presented. The NLO package produces W gamma+0 jet and W gamma+1jet final states in the hard scattering and the objective is to consistently match these to the initial state radiation from Pythia parton shower. The proposed methodology preserves both the rate of the hard scattering process as well as various kinematic distributions of experimental interest.



قيم البحث

اقرأ أيضاً

We present the Higgs Characterisation (HC) framework to study the properties of the Higgs boson observed at 125 GeV. In this report, we focus on CP properties of the top-quark Yukawa interaction, and show predictions at next-to-leading order accuracy in QCD, including parton-shower effects, for Higgs production in association with a single top quark at the LHC.
We report on our exploration of matching matrix element calculations with the parton-shower models contained in the event generators HERWIG and Pythia. We describe results for e+e- collisions and for the hadroproduction of W bosons and Drell--Yan pai rs. We compare methods based on (1) a strict implementation of ideas proposed by Catani, et al., (2) a generalization based on using the internal Sudakov form factors of HERWIG and Pythia, and (3) a simpler proposal of M. Mangano. Where appropriate, we show the dependence on various choices of scales and clustering that do not affect the soft and collinear limits of the predictions, but have phenomenological implications. Finally, we comment on how to use these results to state systematic errors on the theoretical predictions.
We present a set of NLO SUSY-QCD calculations for the pair production of neutralinos and charginos at the LHC, and their matching to parton-shower programs in the framework of the POWHEG-BOX program package. The code we have developed provides a SUSY Les Houches Accord interface for setting supersymmetric input parameters. Decays of the neutralinos and charginos and parton-shower effects can be simulated with PYTHIA. To illustrate the capabilities of our program, we present phenomenological results for a representative SUSY parameter point. We find that NLO-QCD corrections increase the production rates for neutralinos and charginos significantly. The impact of parton-shower effects on distributions of the weakinos is small, but non-negligible for jet distributions.
In the era of precision physics measurements at the LHC, efficient and exhaustive estimations of theoretical uncertainties play an increasingly crucial role. In the context of Monte Carlo (MC) event generators, the estimation of such uncertainties tr aditionally requires independent MC runs for each variation, for a linear increase in total run time. In this work, we report on an automated evaluation of the dominant (renormalization-scale and non-singular) perturbative uncertainties in the PYTHIA 8 event generator, with only a modest computational overhead. Each generated event is accompanied by a vector of alternative weights (one for each uncertainty variation), with each set separately preserving the total cross section. Explicit scale-compensating terms can be included, reflecting known coefficients of higher-order splitting terms and reducing the effect of the variations. The formalism also allows for the enhancement of rare partonic splittings, such as $g to b bar{b}$ and $qto q gamma$, to obtain weighted samples enriched in these splittings while preserving the correct physical Sudakov factors.
We present a next-to-leading order (NLO) global DGLAP analysis of nuclear parton distribution functions (nPDFs) and their uncertainties. Carrying out an NLO nPDF analysis for the first time with three different types of experimental input -- deep ine lastic $ell$+A scattering, Drell-Yan dilepton production in p+$A$ collisions, and inclusive pion production in d+Au and p+p collisions at RHIC -- we find that these data can well be described in a conventional collinear factorization framework. Although the pion production has not been traditionally included in the global analyses, we find that the shape of the nuclear modification factor $R_{rm dAu}$ of the pion $p_T$-spectrum at midrapidity retains sensitivity to the gluon distributions, providing evidence for shadowing and EMC-effect in the nuclear gluons. We use the Hessian method to quantify the nPDF uncertainties which originate from the uncertainties in the data. In this method the sensitivity of $chi^2$ to the variations of the fitting parameters is mapped out to orthogonal error sets which provide a user-friendly way to calculate how the nPDF uncertainties propagate to any factorizable nuclear cross-section. The obtained NLO and LO nPDFs and the corresponding error sets are collected in our new release called {ttfamily EPS09}. These results should find applications in precision analyses of the signatures and properties of QCD matter at the LHC and RHIC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا