ترغب بنشر مسار تعليمي؟ اضغط هنا

The Large-Scale Orientations of Disk Galaxies

105   0   0.0 ( 0 )
 نشر من قبل Oliver Hahn
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use a 380 h-1 pc resolution hydrodynamic AMR simulation of a cosmic filament to investigate the orientations of a sample of ~100 well-resolved galactic disks spanning two orders of magnitude in both stellar and halo mass. We find: (i) At z=0, there is an almost perfect alignment at a median angle of 18 deg, in the inner dark matter halo regions where the disks reside, between the spin vector of the gaseous and stellar galactic disks and that of their inner host haloes. The alignment between galaxy spin and spin of the entire host halo is however significantly weaker, ranging from a median of ~46 deg at z=1 to ~50 deg at z=0. (ii) The most massive galaxy disks have spins preferentially aligned so as to point along their host filaments. (iii) The spin of disks in lower-mass haloes shows, at redshifts above z~0.5 and in regions of low environmental density, a clear signature of alignment with the intermediate principal axis of the large-scale tidal field. This behavior is consistent with predictions of linear tidal torque theory. This alignment decreases with increasing environmental density, and vanishes in the highest density regions. Non-linear effects in the high density environments are plausibly responsible for establishing this density-alignment correlation. We expect that our numerical results provide important insights for both understanding intrinsic alignment in weak lensing from the astrophysical perspective and formation and evolution processes of galactic disks in a cosmological context.



قيم البحث

اقرأ أيضاً

We have searched for presence of current star formation in outer stellar rings of early-type disk (S0-Sb) galaxies by inspecting a representative sample of nearby galaxies with rings from the recent Spitzer catalog ARRAKIS (Comeron et al. 2014). We h ave found that regular rings (of R-type) reveal young stellar population with the age of less than 200~Myr in about half of all the cases, while in the pseudorings (open rings, R), which inhabit only spiral galaxies, current star formation proceeds almost always.
148 - Kambiz Fathi 2011
Disk scale length and central surface brightness for a sample of about 29955 bright disk galaxies from the Sloan Digital Sky Survey have been analysed. Cross correlation of the SDSS sample with the LEDA catalogue allowed us to investigate the variati on of the scale lengths for different types of disk/spiral galaxies and present distributions and typical trends of scale lengths all the SDSS bands with linear relations that indicate the relation that connect scale lengths in one passband to another. We use the volume corrected results in the r-band and revisit the relation between these parameters and the galaxy morphology. The derived scale lengths presented here are representative for a typical galaxy mass of 10^10.8 solarmasses, and the RMS dispersion is larger for more massive galaxies. We analyse the scale-length-central disk brightness plane and further investigate the Freeman Law and confirm that it indeed defines an upper limit for disk central surface brightness in bright disks (r<17.0), and that disks in late type spirals (T > 6) have fainter central surface brightness. Our results are based on a sample of galaxies in the local universe (z< 0.3) that is two orders of magnitudes larger than any sample previously studied, and deliver statistically significant results that provide a comprehensive test bed for future theoretical studies and numerical simulations of galaxy formation and evolution.
We investigate the correlations between optical and radio isophotal position angles for 14302 SDSS galaxies with $r$ magnitudes brighter than 18 and which have been associated with extended FIRST radio sources. We identify two separate populations of galaxies using the colour, concentration and their principal components. Surprisingly strong statistical alignments are found: late-type galaxies are overwhelmingly biased towards a position angle differences of $0^{circ}$ and early-type galaxies to $90^{circ}$. The late-type alignment can be easily understood in terms of the standard picture in which the radio emission is intimately related to areas of recent star-formation. In early-type galaxies the radio emission is expected to be driven by accretion on to a nuclear black hole. We argue that the observed correlation of the radio axis with the minor axis of the large-scale stellar distribution gives a fundamental insight into the structure of elliptical galaxies, for example, whether or not the nuclear kinematics are decoupled form the rest of the galaxy. Our results imply that the galaxies are oblate spheroids with their radio emission aligned with the minor axis. Remarkably the strength of the correlation of the radio major axis with the optical minor axis depends on radio loudness. Those objects with a low ratio of FIRST radio flux density to total stellar light show a strong minor axis correlation while the stronger radio sources do not. This may reflect different formation histories for the different objects and we suggest we may be seeing the different behaviour of rationally supported and non-rotationally supported ellipticals.
We present a measurement of the correlation function between luminous red galaxies and cool gas traced by Mg II lambda lambda 2796, 2803 absorption, on scales ranging from about 30 kpc to 20 Mpc. The measurement is based on cross-correlating the posi tions of about one million red galaxies at z~0.5 and the flux decrements induced in the spectra of about 10^5 background quasars from the Sloan Digital Sky Survey. We find that: (i) This galaxy-gas correlation reveals a change of slope on scales of about 1 Mpc, consistent with the expected transition from a dark matter halo dominated environment to a regime where clustering is dominated by halo-halo correlations. Assuming that, on average, the distribution of Mg II gas follows that of dark matter up to a gas-to-mass ratio, we find the standard halo model to provide an accurate description of the gas distribution over three orders of magnitude in scale. Within this framework we estimate the average host halo mass of luminous red galaxies to be about 10^{13.5} M_solar, in agreement with other methods. We also find the Mg II gas-to-mass ratio around LRGs to be consistent with the cosmic value estimated on Mpc scales. Combining our galaxy-gas correlation and the galaxy-mass correlation function from galaxy-galaxy lensing analyses we can directly measure the Mg II gas-to-mass ratio as a function of scale and reach the same conclusion. (ii) From line-width estimates, we show that the velocity dispersion of the gas clouds also shows the expected 1- and 2-halo behaviors. On large scales the gas distribution follows the Hubble flow, whereas on small scales we observe the velocity dispersion of the Mg II gas clouds to be lower than that of collisionless dark matter particles within their host halo. This is in line with the fact that cool clouds are subject to the pressure of the virialized hot gas.
We aim to identify and quantify the effects of the satellite distribution around a sample of galaxies in the Catalogue of Isolated Galaxies (CIG), as well as the effects of the Large Scale Structure (LSS) using the SDSS-DR9. To recover the physically bound galaxies we focus on the satellites which are within the escape speed of each CIG galaxy. We also propose a more conservative method using the stacked Gaussian distribution of the velocity difference of the neighbours. The tidal strengths affecting the primary galaxy are estimated to quantify the effects of the local and LSS environments. We also define the projected number density parameter at the 5$^{rm th}$ nearest neighbour to characterise the LSS around the CIG galaxies. Out of the 386 CIG galaxies considered in this study, at least 340 (88% of the sample) have no physically linked satellite. Out of the 386 CIG galaxies, 327 (85% of the sample) have no physical companion within a projected distance of 0.3 Mpc. The CIG galaxies are distributed following the LSS of the local Universe, although presenting a large heterogeneity in their degree of connection with it. A clear segregation appears between early-type CIG galaxies with companions and isolated late-type CIG galaxies. Isolated galaxies are in general bluer, with likely younger stellar populations and rather high star formation with respect to older, redder CIG galaxies with companions. Reciprocally, the satellites are redder and with an older stellar populations around massive early-type CIG galaxies, while they have a younger stellar content around massive late-type CIG galaxies. This suggests that the CIG is composed of a heterogeneous population of galaxies, sampling from old to more recent, dynamical systems of galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا