ﻻ يوجد ملخص باللغة العربية
The photon behavior in an arbitrary superposition of constant magnetic and electric fields is considered on most general grounds basing on the first principles like Lorentz- gauge- charge- and parity-invariance. We make model- and approximation-independent, but still rather informative, statements about the behavior that the requirement of causal propagation prescribes to massive and massless branches of dispersion curves, and describe the way the eigenmodes are polarized. We find, as a consequence of Hermiticity in the transparency domain, that adding a smaller electric field to a strong magnetic field in parallel to the latter causes enhancement of birefringence. We find the magnetic field produced by a point electric charge far from it (a manifestation of magneto-electric phenomenon). We establish degeneracies of the polarization tensor that (under special kinematic conditions) occur due to space-time symmetries of the vacuum left after the external field is imposed.
Measurements sensitive to the structure of both real and virtual photons are presented and compared to theoretical models with various photon parton distribution functions (PDFs). Measurements for real photons show a tendency for the available photon
One of the most important mathematical tools necessary for Quantum Field Theory calculations is the field propagator. Applications are always done in terms of plane waves and although this has furnished many magnificent results, one may still be allo
We find dispersion laws for the photon propagating in the presence of mutually orthogonal constant external electric and magnetic fields in the context of the $theta $-expanded noncommutative QED. We show that there is no birefringence to the first o
We are calculated the expectation value of the axial-vector current induced by the vacuum polarization effect of the Dirac field in constant external electromagnetic field. In calculations we use Schwingers proper time method. The effective Lagrangia
Recent results from the H1 and ZEUS collaborations on hard QCD processes in ep interactions are reviewed. The topics cover jet shapes, the structure of real and virtual photons, and the production of J/Psi mesons and open charm.