ﻻ يوجد ملخص باللغة العربية
In this paper we analyse three models of the early universe, for which the respective mechanisms for generating the curvature perturbation are considered disparate. We find that in fact the mechanisms are very similar, and hence explain why they give rise to a large non-gaussianity. We show that the mechanism for generating the primordial curvature perturbation, and hence the observable non-gaussianity, is similar in both the Curvaton and Modulated Reheating models. In both cases the model can be written in terms of an energy transfer between the constituting fluids. We then show that this is also true for the mechanism of generating the curvature perturbation by symmetry breaking the end of inflation. We then relate this to the non-gaussian contribution to the curvature perturbation and find that it is inversely proportional to the efficiency with which the curvature perturbation is transferred between the fluids. For the first time, we generalise models of modulated reheating to allow for a non-linear energy transfer rate.
In a logamediate inflationary universe model we introduce the curvaton field in order to bring this inflationary model to an end. In this approach we determine the reheating temperature. We also outline some interesting constraints on the parameters
We present constraints on the reheating era within the string Fibre Inflation scenario, in terms of the effective equation-of-state parameter of the reheating fluid, $w_{reh}$. The results of the analysis, completely independent on the details of the
We revise the Non-Gaussianity of canonical curvaton scenario with a generalized $delta N$ formalism, in which it could handle the generic potentials. In various curvaton models, the energy density is dominant in different period including the seconda
We investigate a constraint on reheating followed by alpha-attractor-type inflation (the E-model and T-model) from an observation of the spectral index n_s. When the energy density of the universe is dominated by an energy component with the cosmic e
Inflationary models involving more than one scalar field naturally produce isocurvature perturbations. However, while these are fairly well studied, less is known about their evolution through the reheating epoch, when the inflationary fields decay i