ﻻ يوجد ملخص باللغة العربية
The materials science of graphene grown epitaxially on the hexagonal basal planes of SiC crystals is reviewed. We show that the growth of epitaxial graphene on Si-terminated SiC(0001) is much different than growth on the C-terminated SiC(000 -1) surface, and discuss the physical structure of these graphenes. The unique electronic structure and transport properties of each type of epitaxial graphene is described, as well as progress toward the development of epitaxial graphene devices. This materials system is rich in subtleties, and graphene grown on the two polar faces differs in important ways, but all of the salient features of ideal graphene are found in these epitaxial graphenes, and wafer-scale fabrication of multi-GHz devices already has been achieved.
We present a technique to tune the charge density of epitaxial graphene via an electrostatic gate that is buried in the silicon carbide substrate. The result is a device in which graphene remains accessible for further manipulation or investigation.
Realizing high-performance nanoelectronics requires control of materials at the nanoscale. Methods to produce high quality epitaxial graphene (EG) nanostructures on silicon carbide are known. The next step is to grow Van der Waals semiconductors on t
This article presents a review of epitaxial graphene on silicon carbide, from fabrication to properties, put in the context of other forms of graphene.
Strain engineering has attracted great attention, particularly for epitaxial films grown on a different substrate. Residual strains of SiC have been widely employed to form ultra-high frequency and high Q factor resonators. However, to date the highe
We use ultra-high vacuum chemical vapor deposition to grow polycrystalline silicon carbide (SiC) on c-plane sapphire wafers which are then annealed between 1250 and 1450{deg}C in vacuum to create epitaxial multilayer graphene (MLG). Despite the surfa