ترغب بنشر مسار تعليمي؟ اضغط هنا

The Role of Environment on the Formation of Early-Type Galaxies

140   0   0.0 ( 0 )
 نشر من قبل Ignacio Ferreras
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ben Rogers




اسأل ChatGPT حول البحث

(Abridged) We present a detailed study of the stellar populations of a volume-limited sample of early-type galaxies from SDSS, across a range of environments -- defined as the mass of the host dark matter halo. The stellar populations are explored through the SDSS spectra, via projection onto a set of two spectral vectors determined from Principal Component Analysis. We find the velocity dispersion of the galaxy to be the main driver behind the different star formation histories of early-type galaxies. However, environmental effects are seen to play a role (although minor). Galaxies populating the lowest mass halos have stellar populations on average ~1Gyr younger than the rest of the sample. The fraction of galaxies with small amounts of recent star formation is also seen to be truncated when occupying halos more massive than 3E13Msun. The sample is split into satellite and central galaxies for a further analysis of environment. Satellites are younger than central galaxies of the same stellar mass. The younger satellite galaxies in 6E12Msun halos have stellar populations consistent with the central galaxies found in the lowest mass halos of our sample (i.e. 1E12Msun). This result is indicative of galaxies in lower mass halos being accreted into larger halos.



قيم البحث

اقرأ أيضاً

152 - Ignacio Ferreras 2010
Differences in the stellar populations of galaxies can be used to quantify the effect of environment on the star formation history. We target a sample of early-type galaxies from the Sloan Digital Sky Survey in two different environmental regimes: cl ose pairs and a general sample where environment is measured by the mass of their host dark matter halo. We apply a blind source separation technique based on principal component analysis, from which we define two parameters that correlate, respectively, with the average stellar age (eta) and with the presence of recent star formation (zeta) from the spectral energy distribution of the galaxy. We find that environment leaves a second order imprint on the spectra, whereas local properties - such as internal velocity dispersion - obey a much stronger correlation with the stellar age distribution.
Using data drawn from the DEEP2 and DEEP3 Galaxy Redshift Surveys, we investigate the relationship between the environment and the structure of galaxies residing on the red sequence at intermediate redshift. Within the massive (10 < log(M*/Msun) < 11 ) early-type population at 0.4 < z <1.2, we find a significant correlation between local galaxy overdensity (or environment) and galaxy size, such that early-type systems in higher-density regions tend to have larger effective radii (by ~0.5 kpc or 25% larger) than their counterparts of equal stellar mass and Sersic index in lower-density environments. This observed size-density relation is consistent with a model of galaxy formation in which the evolution of early-type systems at z < 2 is accelerated in high-density environments such as groups and clusters and in which dry, minor mergers (versus mechanisms such as quasar feedback) play a central role in the structural evolution of the massive, early-type galaxy population.
We study the environmental dependence of stellar population properties at z ~ 1.3. We derive galaxy properties (stellar masses, ages and star formation histories) for samples of massive, red, passive early-type galaxies in two high-redshift clusters, RXJ0849+4452 and RXJ0848+4453 (with redshifts of z = 1.26 and 1.27, respectively), and compare them with those measured for the RDCS1252.9-2927 cluster at z=1.24 and with those measured for a similarly mass-selected sample of field contemporaries drawn from the GOODS-South Field. Robust estimates of the aforementioned parameters have been obtained by comparing a large grid of composite stellar population models with extensive 8-10 band photometric coverage, from the rest-frame far-ultraviolet to the infrared. We find no variations of the overall stellar population properties among the different samples of cluster early-type galaxies. However, when comparing cluster versus field stellar population properties we find that, even if the (star formation weighted) ages are similar and depend only on galaxy mass, the ones in the field do employ longer timescales to assemble their final mass. We find that, approximately 1 Gyr after the onset of star formation, the majority (75%) of cluster galaxies have already assembled most (> 80%) of their final mass, while, by the same time, fewer (35%) field ETGs have. Thus we conclude that while galaxy mass regulates the timing of galaxy formation, the environment regulates the timescale of their star formation histories.
We combine SAURON integral field data of a representative sample of local early-type, red sequence galaxies with Spitzer/IRAC imaging in order to investigate the presence of trace star formation in these systems. With the Spitzer data, we identify ga laxies hosting low-level star formation, as traced by PAH emission, with measured star formation rates that compare well to those estimated from other tracers. This star formation proceeds according to established scaling relations with molecular gas content, in surface density regimes characteristic of disk galaxies and circumnuclear starbursts. We find that star formation in early-type galaxies happens exclusively in fast-rotating systems and occurs in two distinct modes. In the first, star formation is a diffuse process, corresponding to widespread young stellar populations and high molecular gas content. The equal presence of co- and counter-rotating components in these systems strongly implies an external origin for the star-forming gas, and we argue that these star formation events may be the final stages of (mostly minor) mergers that build up the bulges of red sequence lenticulars. In the second mode of star formation, the process is concentrated into well-defined disk or ring morphologies, outside of which the host galaxies exhibit uniformly evolved stellar populations. This implies that these star formation events represent rejuvenations within previously quiescent stellar systems. Evidence for earlier star formation events similar to these in all fast rotating early-type galaxies suggests that this mode of star formation may be common to all such galaxies, with a duty cycle of roughly 1/10, and likely contributes to the embedded, co-rotating inner stellar disks ubiquitous in this population.
The molecular gas content of local early-type galaxies is constrained and discussed in relation to their evolution. First, as part of the Atlas3D survey, we present the first complete, large (260 objects), volume-limited single-dish survey of CO in n ormal local early-type galaxies. We find a surprisingly high detection rate of 22%, independent of luminosity and at best weakly dependent on environment. Second, the extent of the molecular gas is constrained with CO synthesis imaging, and a variety of morphologies is revealed. The kinematics of the molecular gas and stars are often misaligned, implying an external gas origin in over a third of the systems, although this behaviour is drastically diffferent between field and cluster environments. Third, many objects appear to be in the process of forming regular kpc-size decoupled disks, and a star formation sequence can be sketched by piecing together multi-wavelength information on the molecular gas, current star formation, and young stars. Last, early-type galaxies do not seem to systematically obey all our usual prejudices regarding star formation, following the standard Schmidt-Kennicutt law but not the far infrared-radio correlation. This may suggest a greater diversity in star formation processes than observed in disk galaxies. Using multiple molecular tracers, we are thus starting to probe the physical conditions of the cold gas in early-types.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا