ﻻ يوجد ملخص باللغة العربية
The Level 1 of the Planck LFI Data Processing Centre (DPC) is devoted to the handling of the scientific and housekeeping telemetry. It is a critical component of the Planck ground segment which has to strictly commit to the project schedule to be ready for the launch and flight operations. In order to guarantee the quality necessary to achieve the objectives of the Planck mission, the design and development of the Level 1 software has followed the ESA Software Engineering Standards. A fundamental step in the software life cycle is the Verification and Validation of the software. The purpose of this work is to show an example of procedures, test development and analysis successfully applied to a key software project of an ESA mission. We present the end-to-end validation tests performed on the Level 1 of the LFI-DPC, by detailing the methods used and the results obtained. Different approaches have been used to test the scientific and housekeeping data processing. Scientific data processing has been tested by injecting signals with known properties directly into the acquisition electronics, in order to generate a test dataset of real telemetry data and reproduce as much as possible nominal conditions. For the HK telemetry processing, validation software have been developed to inject known parameter values into a set of real housekeeping packets and perform a comparison with the corresponding timelines generated by the Level 1. With the proposed validation and verification procedure, where the on-board and ground processing are viewed as a single pipeline, we demonstrated that the scientific and housekeeping processing of the Planck-LFI raw data is correct and meets the project requirements.
Realistic synthetic observations of theoretical source models are essential for our understanding of real observational data. In using synthetic data, one can verify the extent to which source parameters can be recovered and evaluate how various data
We present the development of the End-to-End simulator for the SOXS instrument at the ESO-NTT 3.5-m telescope. SOXS will be a spectroscopic facility, made by two arms high efficiency spectrographs, able to cover the spectral range 350-2000 nm with re
We present an analysis of the effects of beam deconvolution on noise properties in CMB measurements. The analysis is built around the artDeco beam deconvolver code. We derive a low-resolution noise covariance matrix that describes the residual noise
MeerKATHI is the current development name for a radio-interferometric data reduction pipeline, assembled by an international collaboration. We create a publicly available end-to-end continuum- and line imaging pipeline for MeerKAT and other radio tel
The nature of dark matter, dark energy and large-scale gravity pose some of the most pressing questions in cosmology today. These fundamental questions require highly precise measurements, and a number of wide-field spectroscopic survey instruments a