A usual assumption in the so-called {it de Broglie - Bohm} approach to quantum dynamics is that the quantum trajectories subject to typical `guiding wavefunctions turn to be quite irregular, i.e. {it chaotic} (in the dynamical systems sense). In the
present paper, we consider mainly cases in which the quantum trajectories are {it ordered}, i.e. they have zero Lyapunov characteristic numbers. We use perturbative methods to establish the existence of such trajectories from a theoretical point of view, while we analyze their properties via numerical experiments. Using a 2D harmonic oscillator system, we first establish conditions under which a trajectory can be shown to avoid close encounters with a moving nodal point, thus avoiding the source of chaos in this system. We then consider series expansions for trajectories both in the interior and the exterior of the domain covered by nodal lines, probing the domain of convergence as well as how successful the series are in comparison with numerical computations or regular trajectories. We then examine a H{e}non - Heiles system possessing regular trajectories, thus generalizing previous results. Finally, we explore a key issue of physical interest in the context of the de Broglie - Bohm formalism, namely the influence of order in the so-called {it quantum relaxation} effect. We show that the existence of regular trajectories poses restrictions to the quantum relaxation process, and we give examples in which the relaxation is suppressed even when we consider initial ensembles of only chaotic trajectories, provided, however, that the system as a whole is characterized by a certain degree of order.
We show how to adapt the ideas of local energy and momentum conservation in order to derive modifications to the Gross-Pitaevskii equation which can be used phenomenologically to describe irreversible effects in a Bose-Einstein condensate. Our approa
ch involves the derivation of a simplified quantum kinetic theory, in which all processes are treated locally. It is shown that this kinetic theory can then be transformed into a number of phase-space representations, of which the Wigner function description, although approximate, is shown to be the most advantageous. In this description, the quantum kinetic master equation takes the form of a GPE with noise and damping added according to a well-defined prescription--an equation we call the stochastic GPE. From this, a very simplified description we call the phenomenological growth equation can be derived. We use this equation to study i) the nucleation and growth of vortex lattices, and ii) nonlinear losses in a hydrogen condensate, which it is shown can lead to a curious instability phenomenon.
This paper examines the nature of classical correspondence in the case of coherent states at the level of quantum trajectories. We first show that for a harmonic oscillator, the coherent state complex quantum trajectories and the complex classical tr
ajectories are identical to each other. This congruence in the complex plane, not restricted to high quantum numbers alone, illustrates that the harmonic oscillator in a coherent state executes classical motion. The quantum trajectories are those conceived in a modified de Broglie-Bohm scheme and we note that identical classical and quantum trajectories for coherent states are obtained only in the present approach. The study is extended to Gazeau-Klauder and SUSY quantum mechanics-based coherent states of a particle in an infinite potential well and that in a symmetric Poschl-Teller (PT) potential by solving for the trajectories numerically. For the coherent state of the infinite potential well, almost identical classical and quantum trajectories are obtained whereas for the PT potential, though classical trajectories are not regained, a periodic motion results as t --> infty.
De Broglie - Bohm (dBB) theory is a deterministic theory, built for reproducing almost all Quantum Mechanics (QM) predictions, where position plays the role of a hidden variable. It was recently shown that different coincidence patterns are predicted
by QM and dBB when a double slit experiment is realised under specific conditions and, therefore, an experiment can test the two theories. In this letter we present the first realisation of such a double slit experiment by using correlated photons produced in type I Parametric Down Conversion. Our results confirm QM contradicting dBB predictions.
We study the Cauchy problem for the 3D Gross-Pitaevskii equation. The global well-posedness in the natural energy space was proved by Gerard cite{Gerard}. In this paper we prove scattering for small data in the same space with some additional angular
regularity, and in particular in the radial case we obtain small energy scattering.
J. M. F. Bassalo
,P. T. S. Alencar
,D. G. da Silva
.
(2010)
.
"The Feynman-De Broglie-Bohm Propagator for a Semiclassical Formulation of the Gross-Pitaevskii Equation"
.
Mauro Cattani
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا