ترغب بنشر مسار تعليمي؟ اضغط هنا

Differential Proper-Motion Study of the Circumstellar Dust Shell of the Enigmatic Object, HD 179821

187   0   0.0 ( 0 )
 نشر من قبل Toshiya Ueta
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Brian A. Ferguson




اسأل ChatGPT حول البحث

HD179821 is an enigmatic evolved star that possesses characteristics of both a post-asymptotic giant branch star and a yellow hyper-giant, and there has been no evidence that unambiguously defines its nature. These two hypotheses are products of an indeterminate distance, presumed to be 1 kpc or 6 kpc. We have obtained the two-epoch Hubble Space Telescope WFPC2 data of its circumstellar shell, which shows multiple concentric arcs extending out to about 8 arcsec. We have performed differential proper-motion measurements on distinct structures within the circumstellar shell of this mysterious star in hopes of determining the distance to the object, and thereby distinguishing the nature of this enigmatic stellar source. Upon investigation, rather than azimuthal radially symmetric expansion, we discovered a bulk motion of the circumstellar shell of (2.41+-0.43, 2.97+-0.32) mas/yr. This corresponded to a translational ISM flow of (1.28+-0.95, 7.27+-0.75) mas/yr local to the star. This finding implies that the distance to HD 179821 should be rather small in order for its circumstellar shell to preserve its highly intact spherical structure in the presence of the distorting ISM flow, therefore favoring the proposition that HD 179821 is a post-AGB object.



قيم البحث

اقرأ أيضاً

We present the results of differential proper-motion analyses of the Egg Nebula (RAFGL 2688, V1610 Cyg) based on the archived two-epoch optical data taken with the Hubble Space Telescope. First, we determined that the polarization characteristics of the Egg Nebula is influenced by the higher optical depth of the central regions of the nebula (i.e., the dustsphere of about 1000 AU radius), causing the nebula illuminated in two steps -- the direct starlight is first channeled into bipolar cavities and then scattered off to the rest of the nebula. We then measured the amount of motion of local structures and the signature concentric arcs by determining their relative shifts over the 7.25 yr interval. Based on our analysis, which does not rely on the single-scattering assumption, we concluded that the lobes have been excavated by a linear expansion along the bipolar axis for the past 400 yr, while the concentric arcs have been generated continuously and moving out radially at about 10 km/s for the past 5,500 yr, and there appears to be a colatitudinally-increasing trend in the radial expansion velocity field of the concentric arcs. There exist numerical investigations into the mass-loss modulation by the central binary system, which predict such a colatitudinally-increasing expansion velocity field in the spiral-shock trails of the mass-loss ejecta. Therefore, the Egg Nebula may represent a rare edge-on case of the binary-modulated circumstellar environs, corroborating the previous theoretical predictions.
We have derived the absolute proper motion (PM) of the globular cluster M55 using a large set of CCD images collected with the du Pont telescope between 1997 and 2008. We find (PM_RA*cos(DEC), PM_DEC) = (-3.31 +/- 0.10, -9.14 +/- 0.15) mas/yr relativ e to background galaxies. Membership status was determined for 16 945 stars with 14<V<21 from the central part of the cluster. The PM catalogue includes 52 variables of which 43 are probable members of M55. This sample is dominated by pulsating blue straggler stars but also includes 5 eclipsing binaries, three of which are main sequence objects. The survey also identified several candidate blue, yellow and red straggler stars belonging to the cluster. We detected 15 likely members of the Sgr dSph galaxy located behind M55. The average PM for these stars was measured to be (PM_RA*cos(DEC), PM_DEC)=(-2.23 +/- 0.14, -1.83 +/- 0.24) mas/yr.
127 - C.S. Kochanek 2012
We use the progenitor of SN2012aw to illustrate the consequences of modeling circumstellar dust using Galactic (interstellar) extinction laws that (1) ignore dust emission in the near-IR and beyond; (2) average over dust compositions, and (3) mis-cha racterize the optical/UV absorption by assuming that scattered photons are lost to the observer. The primary consequences for the progenitor of SN2012aw are that both the luminosity and the absorption are significantly over-estimated. In particular, the stellar luminosity is most likely in the range 10^4.8 < L/Lsun < 10^5.0 and the star was not extremely massive for a Type IIP progenitor, with M < 15Msun. Given the properties of the circumstellar dust and the early X-ray/radio detections of SN2012aw, the star was probably obscured by an on-going wind with Mdot ~ 10^-5.5 to 10^-5.0 Msun/year at the time of the explosion, roughly consistent with the expected mass loss rates for a star of its temperature (T_* ~ 3600K) and luminosity. In the spirit of Galactic extinction laws, we supply simple interpolation formulas for circumstellar extinction by dusty graphitic and silicate shells as a function of wavelength (>0.3 micron) and total (absorption plus scattering) V-band optical depth (tau < 20). These do not include the contributions of dust emission, but provide a simple, physical alternative to incorrectly using interstellar extinction laws.
We present single-dish and VLBI observations of an outburst of water maser emission from the young binary system Haro 6-10. Haro 6-10 lies in the Taurus molecular cloud and contains a visible T Tauri star with an infrared companion 1.3 north. Using t he Very Long Baseline Array, we obtained five observations spanning 3 months and derived absolute positions for 20 distinct maser spots. Three of the masers can be traced over 3 or more epochs, enabling us to extract absolute proper motions and tangential velocities. We deduce that the masers represent one side of a bipolar outflow that lies nearly in the plane of the sky with an opening angle of ~45deg. They are located within 50 mas of the southern component of the binary, the visible T Tauri star Haro 6-10S. The mean position angle on the sky of the maser proper motions (~220deg) suggests they are related to the previously observed giant Herbig-Haro (HH) flow which includes HH410, HH411, HH412, and HH184A-E. A previously observed HH jet and extended radio continuum emission (mean position angle of ~190deg) must also originate in the vicinity of Haro6-10S and represent a second, distinct outflow in this region. We propose that a yet unobserved companion within 150 mas of Haro6-10S is responsible for the giant HH/maser outflow while the visible star is associated with the HH jet. Despite the presence of H_2 emission in the spectrum of the northern component of the binary, Haro6-10N, none of outflows/jets can be tied directly to this young stellar object.
274 - N. Ozel , B. Mosser , M.A. Dupret 2013
The CoRoT short asteroseismic runs give us the opportunity to observe a large variety of late-type stars through their solar-like oscillations. We report the observation and modeling of the F5V star HD 175272. Our aim is to define a method for extrac ting as much information as possible from a noisy oscillation spectrum. We followed a differential approach that consists of using a well-known star as a reference to characterize another star. We used classical tools such as the envelope autocorrelation function to derive the global seismic parameters of the star. We compared HD 175272 with HD 181420 through a linear approach, because they appear to be asteroseismic twins. The comparison with the reference star enables us to substantially enhance the scientific output for HD 175272. First, we determined its global characteristics through a detailed seismic analysis of HD 181420. Second, with our differential approach, we measured the difference of mass, radius and age between HD 175272 and HD 181420. We have developed a general method able to derive asteroseismic constraints on a star even in case of low-quality data. %This method is based on the comparison to a star with common seismic and classical properties. Seismic data allow accurate measurements of radii and masses differences between the two stars. This method can be applied to stars with interesting properties but low signal-to-noise ratio oscillation spectrum, such as stars hosting an exoplanet or members of a binary system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا