ترغب بنشر مسار تعليمي؟ اضغط هنا

The Commensal Real-time ASKAP Fast Transients (CRAFT) survey

129   0   0.0 ( 0 )
 نشر من قبل J.-P. Macquart
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We are developing a purely commensal survey experiment for fast (<5s) transient radio sources. Short-timescale transients are associated with the most energetic and brightest single events in the Universe. Our objective is to cover the enormous volume of transients parameter space made available by ASKAP, with an unprecedented combination of sensitivity and field of view. Fast timescale transients open new vistas on the physics of high brightness temperature emission, extreme states of matter and the physics of strong gravitational fields. In addition, the detection of extragalactic objects affords us an entirely new and extremely sensitive probe on the huge reservoir of baryons present in the IGM. We outline here our approach to the considerable challenge involved in detecting fast transients, particularly the development of hardware fast enough to dedisperse and search the ASKAP data stream at or near real-time rates. Through CRAFT, ASKAP will provide the testbed of many of the key technologies and survey modes proposed for high time resolution science with the SKA.



قيم البحث

اقرأ أيضاً

Since January 2017, the Commensal Real-time ASKAP Fast Transients survey (CRAFT) has been utilising commissioning antennas of the Australian SKA Pathfinder (ASKAP) to survey for fast radio bursts (FRBs) in flys eye mode. This is the first extensive a stronomical survey using phased array feeds (PAFs), and a total of 20 FRBs have been reported. Here we present a calculation of the sensitivity and total exposure of this survey, using the pulsars B1641-45 (J1644-4559) and B0833-45 (J0835-4510, i.e. Vela) as calibrators. The design of the survey allows us to benchmark effects due to PAF beamshape, antenna-dependent system noise, radio-frequency interference, and fluctuations during commissioning on timescales from one hour to a year. Observation time, solid-angle, and search efficiency are calculated as a function of FRB fluence threshold. Using this metric, effective survey exposures and sensitivities are calculated as a function of the source counts distribution. The implied FRB rate is significantly lower than the $37$,sky$^{-1}$,day$^{-1}$ calculated using nominal exposures and sensitivities for this same sample by citet{craft_nature}. At the Euclidean power-law index of $-1.5$, the rate is $10.7_{-1.8}^{+2.7},{rm (sys)} , pm , 3,{rm (stat)}$,sky$^{-1}$,day$^{-1}$ above a threshold of $57pm6,{rm (sys)}$,Jy,ms, while for the best-fit index for this sample of $-2.1$, it is $16.6_{-1.5}^{+1.9} ,{rm (sys)}, pm 4.7,{rm (stat)}$,sky$^{-1}$,day$^{-1}$ above a threshold of $41.6pm1.5,{rm (sys)}$,Jy,ms. This strongly suggests that these calculations be performed for other FRB-hunting experiments, allowing meaningful comparisons to be made between them.
The Variables and Slow Transients Survey (VAST) on the Australian Square Kilometre Array Pathfinder (ASKAP) is designed to detect highly variable and transient radio sources on timescales from 5 seconds to $sim 5$ years. In this paper, we present the survey description, observation strategy and initial results from the VAST Phase I Pilot Survey. This pilot survey consists of $sim 162$ hours of observations conducted at a central frequency of 888~MHz between 2019 August and 2020 August, with a typical rms sensitivity of 0.24~mJy~beam$^{-1}$ and angular resolution of $12-20$ arcseconds. There are 113 fields, red{each of which was observed for 12 minutes integration time}, with between 5 and 13 repeats, with cadences between 1 day and 8 months. The total area of the pilot survey footprint is 5,131 square degrees, covering six distinct regions of the sky. An initial search of two of these regions, totalling 1,646 square degrees, revealed 28 highly variable and/or transient sources. Seven of these are known pulsars, including the millisecond pulsar J2039--5617. Another seven are stars, four of which have no previously reported radio detection (SCR~J0533--4257, LEHPM~2-783, UCAC3~89--412162 and 2MASS J22414436--6119311). Of the remaining 14 sources, two are active galactic nuclei, six are associated with galaxies and the other six have no multiwavelength counterparts and are yet to be identified.
Radio interferometers have the ability to precisely localize and better characterize the properties of sources. This ability is having a powerful impact on the study of fast radio transients, where a few milliseconds of data is enough to pinpoint a s ource at cosmological distances. However, recording interferometric data at millisecond cadence produces a terabyte-per-hour data stream that strains networks, computing systems, and archives. This challenge mirrors that of other domains of science, where the science scope is limited by the computational architecture as much as the physical processes at play. Here, we present a solution to this problem in the context of radio transients: realfast, a commensal, fast transient search system at the Jansky Very Large Array. Realfast uses a novel architecture to distribute fast-sampled interferometric data to a 32-node, 64-GPU cluster for real-time imaging and transient detection. By detecting transients in situ, we can trigger the recording of data for those rare, brief instants when the event occurs and reduce the recorded data volume by a factor of 1000. This makes it possible to commensally search a data stream that would otherwise be impossible to record. This system will search for millisecond transients in more than 1000 hours of data per year, potentially localizing several Fast Radio Bursts, pulsars, and other sources of impulsive radio emission. We describe the science scope for realfast, the system design, expected outcomes, and ways real-time analysis can help in other fields of astrophysics.
In multi-messenger astronomy, rapid investigation of interesting transients is imperative. As an observatory with a 4$pi$ steradian field of view and $sim$99% uptime, the IceCube Neutrino Observatory is a unique facility to follow up transients, and to provide valuable insight for other observatories and inform their observing decisions. Since 2016, IceCube has been using low-latency data to rapidly respond to interesting astrophysical events reported by the multi-messenger observational community. Here, we describe the pipeline used to perform these follow up analyses and provide a summary of the 58 analyses performed as of July 2020. We find no significant signal in the first 58 analyses performed. The pipeline has helped inform various electromagnetic observing strategies, and has constrained neutrino emission from potential hadronic cosmic accelerators.
We report the experimental setup and overall results of the AARTFAAC wide-field radio survey, which consists of observing the sky within 50$^circ$ of Zenith, with a bandwidth of 3.2$,$MHz, at a cadence of 1$,$s, for 545$,$h. This yielded nearly 4 mil lion snapshots, two per second, of on average 4800 square degrees and a sensitivity of around 60$,$Jy. We find two populations of transient events, one originating from PSR$,$B0950$+$08 and one from strong ionospheric lensing events, as well as a single strong candidate for an extragalactic transient, with a peak flux density of $80pm30$$,$Jy and a dispersion measure of $73pm3,mathrm{~pc~cm^{-3}}$, We also set a strong upper limit of 1.1 all-sky per day to the rate of any other populations of fast, bright transients. Lastly, we constrain some previously detected types of transient sources by comparing our detections and limits with other low-frequency radio transient surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا