ترغب بنشر مسار تعليمي؟ اضغط هنا

The role of oxygen ions in the formation of a bifurcated current sheet in the magnetotail

323   0   0.0 ( 0 )
 نشر من قبل Serena Dalena
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cluster observations in the near-Earth magnetotail have shown that sometimes the current sheet is bifurcated, i.e. it is divided in two layers. The influence of magnetic turbulence on ion motion in this region is investigated by numerical simulation, taking into account the presence of both protons and oxygen ions. The magnetotail current sheet is modeled as a magnetic field reversal with a normal magnetic field component $B_n$, plus a three-dimensional spectrum of magnetic fluctuations $delta {bf B}$, which represents the observed magnetic turbulence. The dawn-dusk electric field E$_y$ is also included. A test particle simulation is performed using different values of $delta {bf B}$, E$_y$ and injecting two different species of particles, O$^+$ ions and protons. O$^+$ ions can support the formation of a double current layer both in the absence and for large values of magnetic fluctuations ($delta B/B_0 = 0.0$ and $delta B/B_0 geq 0.4$, where B$_0$ is the constant magnetic field in the magnetospheric lobes).

قيم البحث

اقرأ أيضاً

We present AIA observations of a structure we interpret as a current sheet associated with an X4.9 flare and coronal mass ejection that occurred on 2014~February~25 in NOAA Active Region 11990. We characterize the properties of the current sheet, fin ding that the sheet remains on the order of a few thousand km thick for much of the duration of the event and that its temperature generally ranged between $8-10,mathrm{MK}$. We also note the presence of other phenomena believed to be associated with magnetic reconnection in current sheets, including supra-arcade downflows and shrinking loops. We estimate that the rate of reconnection during the event was $M_{A} approx 0.004-0.007$, a value consistent with model predictions. We conclude with a discussion of the implications of this event for reconnection-based eruption models.
Using a simple two-dimensional, zero-beta model, we explore the manner by which reconnection at a current sheet releases and dissipates free magnetic energy. We find that only a small fraction (3%-11% depending on current sheet size) of the energy is stored close enough to the current sheet to be dissipated abruptly by the reconnection process. The remaining energy, stored in the larger-scale field, is converted to kinetic energy in a fast magnetosonic disturbance propagating away from the reconnection site, carrying the initial current and generating reconnection-associated flows (inflow and outflow). Some of this reflects from the lower boundary (the photosphere) and refracts back to the X-point reconnection site. Most of this inward wave energy is reflected back again, and continues to bounce between X-point and photosphere until it is gradually dissipated, over many transits. This phase of the energy dissipation process is thus global and lasts far longer than the initial purely local phase. In the process a significant fraction of the energy (25%-60%) remains as undissipated fast magnetosonic waves propagating away from the reconnection site, primarily upward. This flare-generated wave is initiated by unbalanced Lorentz forces in the reconnection-disrupted current sheet, rather than by dissipation-generated pressure, as some previous models have assumed. Depending on the orientation of the initial current sheet the wave front is either a rarefaction, with backward directed flow, or a compression, with forward directed flow.
A current sheet, where magnetic energy is liberated through reconnection and is converted to other forms, is thought to play the central role in solar flares, the most intense explosions in the heliosphere. However, the evolution of a current sheet a nd its subsequent role in flare-related phenomena such as particle acceleration is poorly understood. Here we report observations obtained with NASAs Solar Dynamics Observatory that reveal a multiphase evolution of a current sheet in the early stages of a solar flare, from its formation to quasi-stable evolution and disruption. Our observations have implications for the understanding of the onset and evolution of reconnection in the early stages of eruptive solar flares.
We report on the structure and evolution of a current sheet that formed in the wake of an eruptive X8.3 flare observed at the west limb of the Sun on September 10, 2017. Using observations from the EUV Imaging Spectrometer (EIS) on Hinode and the Atm ospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO), we find that plasma in the current sheet reaches temperatures of about 20 MK and that the range of temperatures is relatively narrow. The highest temperatures occur at the base of the current sheet, in the region near the top of the post-flare loop arcade. The broadest high temperature line profiles, in contrast, occur at the largest observed heights. Further, line broadening is strong very early in the flare and diminishes over time. The current sheet can be observed in the AIA 211 and 171 channels, which have a considerable contribution from thermal bremsstrahlung at flare temperatures. Comparisons of the emission measure in these channels with other EIS wavelengths and AIA channels dominated by Fe line emission indicate a coronal composition and suggest that the current sheet is formed by the heating of plasma already in the corona. Taken together, these observations suggest that some flare heating occurs in the current sheet while additional energy is released as newly reconnected field lines relax and become more dipolar.
Signatures of the dissipation region of collisionless magnetic reconnection are investigated by the Geotail spacecraft for the 15 May 2003 event. The energy dissipation in the rest frame of the electrons bulk flow is considered in an approximate form D*_e, which is validated by a particle-in-cell simulation. The dissipation measure is directly evaluated from the {plasma moments}, the electric field, and the magnetic field. Using D*_e, a compact dissipation region is successfully detected in the vicinity of the possible X-point in Geotail data. The dissipation rate is 45 pWm**{-3}. The length of the dissipation region is estimated to 1--2 local ion inertial length. The Lorentz work W, the work rate by Lorentz force to plasmas, is also introduced. It is positive over the reconnection region and it has a peak around the pileup region away from the X-point. These new measures D*_e and W provide useful information to understand the reconnection structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا