ترغب بنشر مسار تعليمي؟ اضغط هنا

New insight into the relation between star formation activity and dust content in galaxies

390   0   0.0 ( 0 )
 نشر من قبل Elisabete da Cunha
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(Abridged) We assemble a sample of 3258 low-redshift galaxies from the SDSS DR6 with complementary photometric observations by GALEX, 2MASS and IRAS at far-ultraviolet and infrared wavelengths. We use a recent, simple but physically motivated model to interpret the observed spectral energy distributions of the galaxies in this sample in terms of statistical constraints on physical parameters describing the star formation history and dust content. The focus on a subsample of 1658 galaxies with highest S/N observations enables us to investigate most clearly several strong correlations between various derived physical properties of galaxies. We find that the typical dust mass of a star-forming correlates remarkably well with the star formation rate (SFR). We also find that the dust-to-stellar mass ratio, the ratio of dust mass to star formation rate and the fraction of dust luminosity contributed by the diffuse interstellar medium all correlate strongly with specific SFR. A comparison with recent models of chemical and dust evolution of galaxies suggests that these correlations could arise, at least in part, from an evolutionary sequence. As galaxies form stars, their ISM becomes enriched in dust, while the drop in gas supply makes the specific SFR decrease. Interestingly, as a result, a young, actively star-forming galaxy with low dust-to-gas ratio may still be highly dusty because it contains large amounts of interstellar gas. This may be important for the interpretation of the infrared emission from young, gas-rich star-forming galaxies at high redshift. Our study provides a useful local reference for future statistical studies of the star formation and dust properties of galaxies at high redshifts.

قيم البحث

اقرأ أيضاً

126 - Bahram Mobasher 2008
For a mass-selected sample of 66544 galaxies with photometric redshifts from the Cosmic Evolution Survey (COSMOS), we examine the evolution of star formation activity as a function of stellar mass in galaxies. We estimate the cosmic star formation ra tes (SFR) over the range 0.2 < z < 1.2, using the rest-frame 2800 A flux (corrected for extinction). We find the mean SFR to be a strong function of the galactic stellar mass at any given redshift, with massive systems (log (M/M(Sun)) > 10.5) contributing less (by a factor of ~ 5) to the total star formation rate density (SFRD). Combining data from the COSMOS and Gemini Deep Deep Survey (GDDS), we extend the SFRD-z relation as a function of stellar mass to z~2. For massive galaxies, we find a steep increase in the SFRD-z relation to z~2; for the less massive systems, the SFRD which also increases from z=0 to 1, levels off at z~1. This implies that the massive systems have had their major star formation activity at earlier epochs (z > 2) than the lower mass galaxies. We study changes in the SFRDs as a function of both redshift and stellar mass for galaxies of different spectral types. We find that the slope of the SFRD-z relation for different spectral type of galaxies is a strong function of their stellar mass. For low and intermediate mass systems, the main contribution to the cosmic SFRD comes from the star-forming galaxies while, for more massive systems, the evolved galaxies are the most dominant population.
77 - T.D. Rawle 2012
We present far-infrared (FIR) analysis of 68 Brightest Cluster Galaxies (BCGs) at 0.08 < z < 1.0. Deriving total infrared luminosities directly from Spitzer and Herschel photometry spanning the peak of the dust component (24-500um), we calculate the obscured star formation rate (SFR). 22(+6.2,-5.3)% of the BCGs are detected in the far-infrared, with SFR= 1-150 M_sun/yr. The infrared luminosity is highly correlated with cluster X-ray gas cooling times for cool-core clusters (gas cooling time <1 Gyr), strongly suggesting that the star formation in these BCGs is influenced by the cluster-scale cooling process. The occurrence of the molecular gas tracing Ha emission is also correlated with obscured star formation. For all but the most luminous BCGs (L_TIR > 2x10^11 L_sun), only a small (<0.4 mag) reddening correction is required for SFR(Ha) to agree with SFR_FIR. The relatively low Ha extinction (dust obscuration), compared to values reported for the general star-forming population, lends further weight to an alternate (external) origin for the cold gas. Finally, we use a stacking analysis of non-cool-core clusters to show that the majority of the fuel for star formation in the FIR-bright BCGs is unlikely to originate form normal stellar mass loss.
131 - Benedetta Vulcani 2009
Analyzing 24 mu m MIPS/Spitzer data and the [O II]3727 line of a sample of galaxies at 0.4 < z < 0.8 from the ESO Distant Cluster Survey (EDisCS), we investigate the ongoing star formation rate (SFR) and the specific star formation rate (SSFR) as a f unction of stellar mass in galaxy clusters and groups, and compare with field studies. As for the field, we find a decline in SFR with time, indicating that star formation (SF) was more active in the past, and a decline in SSFR as galaxy stellar mass increases, showing that the current SF contributes more to the fractional growth of low-mass galaxies than high-mass galaxies. However, we find a lower median SFR (by a factor of ~1.5) in cluster star-forming galaxies than in the field. The difference is highly significant when all Spitzer and emission-line galaxies are considered, regardless of color. It remains significant at z>0.6 after removing red emission-line (REL) galaxies, to avoid possible AGN contamination. While there is overlap between the cluster and field SFR-Mass relations, we find a population of cluster galaxies (10-25%) with reduced SFR for their mass. These are likely to be in transition from star-forming to passive. Comparing separately clusters and groups at z>0.6, only cluster trends are significantly different from the field, and the average cluster SFR at a given mass is ~2 times lower than the field. We conclude that the average SFR in star-forming galaxies varies with galaxy environment at a fixed galaxy mass.
Recent results have suggested that the well known mass-metallicity relation has a strong dependence on the star formation rate, to the extent that a three dimensional `fundamental metallicity relation exists which links the three parameters with mini mal scatter. In this work, we use a sample of 4253 local galaxies observed in atomic hydrogen from the ALFALFA survey to demonstrate, for the first time, that a similar fundamental relation (the HI-FMR) also exists between stellar mass, gas-phase metallicity, and HI mass. This latter relation is likely more fundamental, driving the relation between metallicity, SFR and mass. At intermediate masses, the behaviour of the gas fundamental metallicity relation is very similar to that expressed via the star formation rate. However, we find that the dependence of metallicity on HI content persists to the highest stellar masses, in contrast to the `saturation of metallicity with SFR. It is interesting to note that the dispersion of the relation is very low at intermediate stellar masses (9< log(M*/Msun) <11), suggesting that in this range galaxies evolve smoothy, in an equilibrium between gas inflow, outflow and star formation. At high and low stellar masses, the scatter of the relation is significantly higher, suggesting that merging events and/or stochastic accretion and star formation may drive galaxies outside the relation. We also assemble a sample of galaxies observed in CO. However, due to a small sample size, strong selection bias, and the influence of a metallicity-dependent CO/H2 conversion factor, the data are insufficient to test any influence of molecular gas on metallicity.
The enormous amounts of infrared (IR) radiation emitted by luminous infrared galaxies (LIRGs, L_IR=10^11-10^12Lsun) and ultraluminous infrared galaxies (ULIRGs, L_IR>10^12Lsun) are produced by dust heated by intense star formation (SF) activity and/o r an active galactic nucleus (AGN). The elevated star formation rates and high AGN incidence in (U)LIRGs make them ideal candidates to study the interplay between SF and AGN activity in the local universe. In this paper I review recent results on the physical extent of the SF activity, the AGN detection rate (including buried AGN), the AGN bolometric contribution to the luminosity of the systems, as well as the evolution of local LIRGs and ULIRGs. The main emphasis of this review is on recent results from IR observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا