ﻻ يوجد ملخص باللغة العربية
We have analyzed the first 3.75 years of data from TAOS, the Taiwanese American Occultation Survey. TAOS monitors bright stars to search for occultations by Kuiper Belt Objects (KBOs). This dataset comprises 5e5 star-hours of multi-telescope photometric data taken at 4 or 5 Hz. No events consistent with KBO occultations were found in this dataset. We compute the number of events expected for the Kuiper Belt formation and evolution models of Pan & Sari (2005), Kenyon & Bromley (2004), Benavidez & Campo Bagatin (2009), and Fraser (2009). A comparison with the upper limits we derive from our data constrains the parameter space of these models. This is the first detailed comparison of models of the KBO size distribution with data from an occultation survey. Our results suggest that the KBO population is comprised of objects with low internal strength and that planetary migration played a role in the shaping of the size distribution.
We present the results of a search for occultation events by objects at distances between 100 and 1000 AU in lightcurves from the Taiwanese-American Occultation Survey (TAOS). We searched for consecutive, shallow flux reductions in the stellar lightc
We study the influence of outer Solar System architecture on the structural evolution of the Oort Cloud (OC) and the flux of Earth-crossing comets. In particular, we seek to quantify the role of the giant planets as planetary protectors. To do so, we
Two new interplanetary technologies have advanced in the past decade to the point where they may enable exciting, affordable missions that reach further and faster deep into the outer regions of our solar system: (i) small and capable interplanetary
We present the results of a search for outer Solar System objects in the full six years of data (Y6) from the Dark Energy Survey (DES). The DES covered a contiguous $5000$ deg$^2$ of the southern sky with $approx 80,000$ $3$ deg$^2$ exposures in the
Stars and planets are the fundamental objects of the Universe. Their formation processes, though related, may differ in important ways. Stars almost certainly form from gravitational collapse and probably have formed this way since the first stars li