ترغب بنشر مسار تعليمي؟ اضغط هنا

Angular Distribution of Photons in Coherent Bremsstrahlung in Deformed Crystals

161   0   0.0 ( 0 )
 نشر من قبل Vahram Parazian V
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف V. V. Parazian




اسأل ChatGPT حول البحث

We investigate the angular distribution of photons in the coherent bremsstrahlung process by high-energy electrons in a periodically deformed single crystal with a complex base. The formula for the corresponding differential cross-section is derived for an arbitrary deformation field. The case is considered in detail when the electron enters into the crystal at small angles with respect to a crystallographic axis. The results of the numerical calculations are presented for SiO2 single crystal and Moliere parameterization of the screened atomic potentials in the case of the deformation field generated by the acoustic wave of S -type.



قيم البحث

اقرأ أيضاً

235 - V. V. Parazian 2009
We investigate the angular distribution of positrons in the coherent process electronpositron pair creation process by high-energy photons in a periodically deformed single crystal with a complex base. The formula for the corresponding differential c ross-section is derived for an arbitrary deformation field. The case is considered in detail when the photon enters into the crystal at small angles with respect to a crystallographic axis. The results of the numerical calculations are presented for${mathrm{SiO}}_{2}$ and diamond single crystals and Moliere parameterization of the screened atomic potentials in the case of the deformation field generated by the acoustic wave of S-type.
In the present paper we investigate coherent bremsstrahlung of high energy electrons moving in a periodically deformed single crystal with a complex base. The formula for corresponding differential cross-section is derived for an arbitrary deformatio n field. The conditions are discussed under which the influence of the deformation is important. The case is considered in detail when the electron enters into the crystal at small angles with respect to a crystallographic axis. It is shown that in dependence of the parameters, the presence of the deformation can either enhance or reduce the bremsstrahlung cross-section.
We study the angular distribution of the radiation from a relativistic charged particle uniformly rotating along an equatorial orbit around a dielectric ball. Earlier it was shown that for some values of the problem parameters and in the case of weak absorption in the ball material, the radiation intensity on a given harmonic can be essentially larger than that for the same charge rotating in the vacuum or in a homogeneous transparent medium having the same real part of dielectric permittivity as the ball material. The generation of such high power radiation is a consequence of the constructive superposition of electromagnetic oscillations of Cherenkov radiation induced near the trajectory of the particle and partially locked inside the ball. The angular distribution of the number of the emitted quanta is investigated for such high power radiation. It is shown that the radiation is mainly located in the angular range near the rotation plane determined by the Cherenkov condition for the velocity of the charge image on the ball surface. The numerical analysis is given for balls made of strontium titanate, melted quartz and teflon in the gigahertz and terahertz frequency ranges.
We examine the spectrum of bremsstrahlung photons that results from the stopping of the initial net charge distributions in ultra-relativistic nucleus-nucleus collisions at the LHC. This effect has escaped detection so far since it becomes sizeable o nly at very low transverse momentum and at sufficiently forward rapidity. We argue that it may be within reach of the next-generation LHC heavy-ion detector ALICE-3 that is currently under study, and we comment on the physics motivation for measuring it.
We investigate the coherent electron-positron pair creation by high-energy photons in a periodically deformed single crystal with a complex base. The formula for the corresponding differential cross-section is derived for an arbitrary deformation fie ld. The conditions are specified under which the influence of the deformation is considerable. The case is considered in detail when the photon enters into the crystal at small angles with respect to a crystallographic axis. The results of the numerical calculations are presented for $mathrm{SiO}_{2}$ single crystal and Moliere parametrization of the screened atomic potentials in the case of the deformation field generated by the acoustic wave of $S$ type. In dependence of the parameters, the presence of deformation can either enhance or reduce the pair creation cross-section. This can be used to control the parameters of the positron sources for storage rings and colliders.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا