ﻻ يوجد ملخص باللغة العربية
Some accreting neutron stars and young stars show unexplained episodic flares in the form of quasi-periodic oscillations or recurrent outbursts. In a series of two papers we present new work on an instability that can lead to episodic outbursts when the accretion disc is truncated by the stars strong magnetic field close to the corotation radius (where the Keplerian frequency matches the stars rotational frequency). In this paper we outline the physics of the instability and use a simple parameterization of the disc-field interaction to explore the instability numerically, which we show can lead to repeated bursts of accretion as well as steady-state solutions, as first suggested by Sunyaev and Shakura. The cycle time of these bursts increases with decreasing accretion rate. These solutions show that the usually assumed `propeller state, in which mass is ejected from the system, does not need to occur even at very low accretion rates.
In the last twenty years, the topic of episodic accretion has gained significant interest in the star formation community. It is now viewed as a common, though still poorly understood, phenomenon in low-mass star formation. The FU Orionis objects (FU
Aims: Our goal is to investigate how the strength of episodic accretion bursts depends on eccentricity. Methods: We investigate the binary trigger hypothesis in longer-period (>20yr) binaries by carrying out three-dimensional magnetohydrodynamical (M
The earliest phases of star formation are characterised by intense mass accretion from the circumstellar disk to the central star. One group of young stellar objects, the FU Orionis-type stars exhibit accretion rate peaks accompanied by bright erupti
We present the latest development of the disk gravitational instability and fragmentation model, originally introduced by us to explain episodic accretion bursts in the early stages of star formation. Using our numerical hydrodynamics model with impr
We aim at studying the causal link between the knotty jet structure in CARMA 7, a young Class 0 protostar in the Serpens South cluster, and episodic accretion in young protostellar disks. We used numerical hydrodynamics simulations to derive the prot