ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural and paramagnetic properties of dilute Ga1-xMnxN

180   0   0.0 ( 0 )
 نشر من قبل Dariusz Sztenkiel
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Systematic investigations of the structural and magnetic properties of single crystal (Ga,Mn)N films grown by metal organic vapor phase epitaxy are presented. High resolution transmission electron microscopy, synchrotron x-ray diffraction, and extended x-ray absorption fine structure studies do not reveal any crystallographic phase separation and indicate that Mn occupies Ga-substitutional sites in the Mn concentration range up to 1%. The magnetic properties as a function of temperature, magnetic field and its orientation with respect to the c-axis of the wurtzite structure can be quantitatively described by the paramagnetic theory of an ensemble of non-interacting Mn$^{3+}$ ions in the relevant crystal field, a conclusion consistent with the x-ray absorption near edge structure analysis. A negligible contribution of Mn in the 2+ charge state points to a low concentration of residual donors in the studied films. Studies on modulation doped p-type (Ga,Mn)N/(Ga,Al)N:Mg heterostructures do not reproduce the high temperature robust ferromagnetism reported recently for this system.



قيم البحث

اقرأ أيضاً

By employing highly sensitive millikelvin SQUID magnetometry, the magnitude of the Curie temperature as a function of the Mn concentration x is determined for thoroughly characterized Ga1-xMnxN. The interpretation of the results in the frame of tight binding theory and of Monte Carlo simulations, allows us to assign the spin interaction to ferromagnetic superexchange and to benchmark the accuracy of state-of-the-art ab initio methods in predicting the magnetic characteristics of dilute magnetic insulators.
We demonstrate the control of the hole concentration in Ga1-xMnxP over a wide range by introducing compensating vacancies. The resulting evolution of the Curie temperature from 51 K to 7.5 K is remarkably similar to that observed in Ga1-xMnxAs despit e the dramatically different character of hole transport between the two material systems. The highly localized nature of holes in Ga1-xMnxP is reflected in the accompanying increase in resistivity by many orders of magnitude. Based on variable-temperature resistivity data we present a general picture for hole conduction in which variable-range hopping is the dominant transport mechanism in the presence of compensation.
We report on the metalorganic chemical vapor deposition (MOCVD) of GaN:Fe and (Ga,Fe)N layers on c-sapphire substrates and their thorough characterization via high-resolution x-ray diffraction (HRXRD), transmission electron microscopy (TEM), spatiall y-resolved energy dispersive X-ray spectroscopy (EDS), secondary-ion mass spectroscopy (SIMS), photoluminescence (PL), Hall-effect, electron-paramagnetic resonance (EPR), and magnetometry employing a superconducting quantum interference device (SQUID). A combination of TEM and EDS reveals the presence of coherent nanocrystals presumably FexN with the composition and lattice parameter imposed by the host. From both TEM and SIMS studies, it is stated that the density of nanocrystals and, thus the Fe concentration increases towards the surface. In layers with iron content x<0.4% the presence of ferromagnetic signatures, such as magnetization hysteresis and spontaneous magnetization, have been detected. We link the presence of ferromagnetic signatures to the formation of Fe-rich nanocrystals, as evidenced by TEM and EDS studies. This interpretation is supported by magnetization measurements after cooling in- and without an external magnetic field, pointing to superparamagnetic properties of the system. It is argued that the high temperature ferromagnetic response due to spinodal decomposition into regions with small and large concentration of the magnetic component is a generic property of diluted magnetic semiconductors and diluted magnetic oxides showing high apparent Curie temperature.
Angular-dependent channeling Rutherford Backscattering Spectroscopy (c-RBS) has been used to quantify the fraction of Cr atoms on substitutional, interstitial, and random sites in epitaxial Ga1-xCrxN films grown by reactive molecular-beam epitaxy. Th e morphology of these films and correlation with their magnetic properties has been investigated. Films grown at temperatures below ~ 750oC have up to 90% of Cr occupying substitutional sites. Post-growth annealing at 825oC results in a systematic drop in the fraction of substitutional Cr as well as a fall off in the ferromagnetic signal. The roles of non-substitutional Cr in transferring charge from the Cr t2 band and segregation of substitutional Cr in the loss of magnetism are discussed. Overall, these results provide strong microscopic evidence that Cr-doped III-N systems are dilute magnetic semiconductors.
Specific heat measurements were used to study the magnetic phase transition in Ga1-xMnxAs. Two different types of Ga1-xMnxAs samples have been investigated. The sample with a Mn concentration of 1.6% shows insulating behavior, and the sample with a M n concentration of 2.6% is metallic. The temperature dependence of the specific heat for both samples reveals a pronounced lambda-shaped peak near the Curie temperature, which indicates a second-order phase transition in these samples. The critical behavior of the specific heat for Ga1-xMnxAs samples is consistent with the mean-field behavior with Gaussian fluctuations of the magnetization in the close vicinity of TC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا