ترغب بنشر مسار تعليمي؟ اضغط هنا

Charged Higgs boson production in association with a top quark in MC@NLO

143   0   0.0 ( 0 )
 نشر من قبل Chris White
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the calculation of charged Higgs boson production in association with top quark in the MC@NLO framework for combining NLO matrix elements with a parton shower. The process is defined in a model independent manner for wide applicability, and can be used if the charged Higgs boson mass is either greater or less than the mass of the top quark. For the latter mass region, care is needed in defining the charged Higgs production mode due to interference with top pair production. We give a suitable definition applicable in an NLO (plus parton shower) context, and present example results for the LHC.



قيم البحث

اقرأ أيضاً

We present the calculation of the cross section and invariant mass distribution for Higgs boson pair production in gluon fusion at next-to-leading order (NLO) in QCD. Top-quark masses are fully taken into account throughout the calculation. The virtu al two-loop amplitude has been generated using an extension of the program GoSam supplemented with an interface to Reduze for the integral reduction. The occurring integrals have been calculated numerically using the program SecDec. Our results, including the full top-quark mass dependence for the first time, allow us to assess the validity of various approximations proposed in the literature, which we also recalculate. We find substantial deviations between the NLO result and the different approximations, which emphasizes the importance of including the full top-quark mass dependence at NLO.
We analyse the production of a Higgs boson in association with a top--antitop-quark pair in the Standard Model at the LHC. Considering the final state consisting of four b jets, two jets, one identified charged lepton and missing energy, we examine t he irreducible background for the production rate and several kinematical distributions. While ttH production and decay is roughly a fourth of the full process for the final state specified above, ttbb production constitutes the main contribution with about $92%$. Surprisingly, interference effects result in a reduction of the cross-section by five per cent. Furthermore, we consider NLO QCD corrections for the production of a Higgs boson, two charged leptons, two neutrinos, and two b jets. We discuss the size of the corrections and the scale dependence for the integrated cross section and different distributions. For the integrated cross section we find a $K$ factor of 1.17 and a reduction of the scale dependence from $30%$ at leading order to $5%$ at next-to-leading order.
We present a detailed study of Higgs boson production in association with a single top quark at the LHC, at next-to-leading order accuracy in QCD. We consider total and differential cross sections, at the parton level as well as by matching short dis tance events to parton showers, for both t-channel and s-channel production. We provide predictions relevant for the LHC at 13 TeV together with a thorough evaluation of the residual uncertainties coming from scale variation, parton distributions, strong coupling constant and heavy quark masses. In addition, for t-channel production, we compare results as obtained in the 4-flavour and 5-flavour schemes, pinning down the most relevant differences between them. Finally, we study the sensitivity to a non-standard-model relative phase between the Higgs couplings to the top quark and to the weak bosons.
We present results from the analytic calculation of top+antitop+Higgs hadronic production at Next-to-Leading Order in QCD interfaced with parton-shower Monte Carlo event generators in the POWHEG BOX framework. We consider kinematic distributions of t he top quark and Higgs boson at the 8 TeV Large Hadron Collider and study the theoretical uncertainties due to specific choices of renormalization/factorization scales and parton-showering algorithms, namely PYTHIA and HERWIG. The importance of spin-correlations in the production and decay stages of a top/antitop quark is discussed on the example of kinematic distributions of leptons originating from the top/antitop decays. The corresponding code is now part of the public release of the POWHEG BOX.
The charged Higgs boson is quite common in many new physics models. In this study we examine the potential of observing a heavy charged Higgs boson in its decay mode of top-quark and bottom-quark in the Type-II Two-Higgs-Doublet-Model. In this model, the chirality structure of the coupling of charged Higgs boson to the top- and bottom-quark is very sensitive to the value of $tanbeta$. As the polarization of the top-quark can be measured experimentally from the top-quark decay products, one could make use of the top-quark polarization to determine the value of $tanbeta$. We preform a detailed analysis of measuring top-quark polarization in the production channels $gbto tH^-$ and $gbar{b}to bar{t}H^+$. We calculate the helicity amplitudes of the charged Higgs boson production and decay.Our calculation shows that the top-quark from the charged Higgs boson decay provides a good probe for measuring $tanbeta$, especially for the intermediate $tanbeta$ region. On the contrary, the top-quark produced in association with the charged Higgs boson cannot be used to measure $tanbeta$ because its polarization is highly contaminated by the $t$-channel kinematics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا