ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-shielding effect of a single phase liquid xenon detector for direct dark matter search

153   0   0.0 ( 0 )
 نشر من قبل Akihiro Minamino
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Liquid xenon is a suitable material for a dark matter search. For future large scale experiments, single phase detectors are attractive due to their simple configuration and scalability. However, in order to reduce backgrounds, they need to fully rely on liquid xenons self-shielding property. A prototype detector was developed at Kamioka Observatory to establish vertex and energy reconstruction methods and to demonstrate the self-shielding power against gamma rays from outside of the detector. Sufficient self-shielding power for future experiments was obtained.



قيم البحث

اقرأ أيضاً

A search for dark matter using an underground single-phase liquid xenon detector was conducted at the Kamioka Observatory in Japan, particularly for Weakly Interacting Massive Particles (WIMPs). We have used 705.9 live days of data in a fiducial volu me containing 97 kg of liquid xenon at the center of the detector. The event rate in the fiducial volume after the data reduction was ${rm (4.2 pm 0.2) times 10^{-3} , day^{-1}kg^{-1} keV_{ee}^{-1}}$ at ${rm 5 , keV_{ee}}$, with a signal efficiency of ${rm 20%}$. All the remaining events are consistent with our background evaluation, mostly of the mis-reconstructed events originated from $^{210}$Pb in the copper plates lining the detectors inner surface. The obtained upper limit on a spin-independent WIMP-nucleon cross section was ${rm 2.2 times 10^{-44} , cm^{2}}$ for a WIMP mass of ${rm 60 , GeV/c^{2}}$ at the $90%$ confidence level, which was the most stringent limit among results from single-phase liquid xenon detectors.
63 - P. Juyal , K. L. Giboni , X. Ji 2021
In the near future there will be the request for very large liquid Xenon (LXe) detectors for Dark Matter (DM) searches in the 50-ton range. To avoid an impractically long, single drift space of a dual-phase detector, it seems beneficial to use the si ngle-phase technique. Since electrons then can drift in any direction, we can segment the homogeneous medium and thus avoid an excessive maximum drift path of order 4 m. The shorter detector length has several benefits, e.g. requiring a lower cathode voltage for the same drift field. We can easily split the TPC into two regions with the cathode in the center and two anodes at the top and bottom. One also can use multiple TPCs stacked on top of each other in the same liquid volume to reduce the maximum drift length even further. A further division of the drift space by installing an additional anode in the center would require S2 photons to traverse the liquid for several times the Rayleigh scattering length in LXe, which is only 30 - 40 cm. This seems to be excessive for good x - y localization. We therefore suggest a geometry of two independent TPCs with two drift spaces each. Despite earlier publications concerns persisted about the effect of shadowing. A detailed FEM model of the anode regions shows that with an aligned wire arrangement the drifting electrons impinge sideways on the anode in a narrow angular range of width 15$^{circ}$ - 20$^{circ}$. Most S2 photons are emitted in full view of the close-by PMT array. About 37% of the S2 photons are shadowed by the anode wire out of which 30% will be reflected back again on the gold plating of the wires. Thus we can observe 74% of the total S2 light. Compared to a dual-phase detector, however, we do not suffer from the extraction efficiency, sometimes reported as low as 50%.
123 - K. Abe , K. Hieda , K. Hiraide 2012
XMASS, a low-background, large liquid-xenon detector, was used to search for solar axions that would be produced by bremsstrahlung and Compton effects in the Sun. With an exposure of 5.6ton days of liquid xenon, the model-independent limit on the cou pling for mass $ll$ 1keV is $|g_{aee}|< 5.4times 10^{-11}$ (90% C.L.), which is a factor of two stronger than the existing experimental limit. The bounds on the axion masses for the DFSZ and KSVZ axion models are 1.9 and 250eV, respectively. In the mass range of 10-40keV, this study produced the most stringent limit, which is better than that previously derived from astrophysical arguments regarding the Sun to date.
61 - E. Aprile 2002
XENON is a novel liquid xenon experiment concept for a sensitive dark matter search using a 1-tonne active target, distributed in an array of ten independent time projection chambers. The design relies on the simultaneous detection of ionization and scintillation signals in liquid xenon, with the goal of extracting as much information as possible on an event-by-event basis, while maintaining most of the target active. XENON is expected to have effective and redundant background identification and discrimination power, higher than 99.5%, and to achieve a very low threshold, on the order of 4 keV visible recoil energy. Based on this expectation and the 1-tonne mass of active xenon, we project a sensitivity of 0.0001 events/kg/day, after 3 yr operation in an appropriate underground location. The XENON experiment has been recently proposed to the National Science Foundation (NSF) for an initial development phase leading to the development of the 100 kg unit module.
102 - M. Cadeddu , M. Lissia , P. Agnes 2017
We examine the sensitivity of a large scale two-phase liquid argon detector to the directionality of the dark matter signal. This study was performed under the assumption that, above 50 keV of recoil energy, one can determine (with some resolution) t he direction of the recoil nucleus without head-tail discrimination, as suggested by past studies that proposed to exploit the dependence of columnar recombination on the angle between the recoil nucleus direction and the electric field. In this paper we study the differential interaction recoil rate as a function of the recoil direction angle with respect to the zenith for a detector located at the Laboratori Nazionali del Gran Sasso and we determine its diurnal and seasonal modulation. Using a likelihood-ratio based approach we show that, with the angular information alone, 100 events are enough to reject the isotropic hypothesis at three standard deviation level. For an exposure of 100 tonne years this would correspond to a spin independent WIMP-nucleon cross section of about 10^-46 cm^2 at 200 GeV WIMP mass. The results presented in this paper provide strong motivation for the experimental determination of directional recoil effects in two-phase liquid argon detectors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا