ترغب بنشر مسار تعليمي؟ اضغط هنا

C IV Emission-line Detection of the Supernova Remnant RCW 114

124   0   0.0 ( 0 )
 نشر من قبل il-Joong Kim
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection of the C IV 1548, 1551 emission line in the region of the RCW 114 nebula using the FIMS/SPEAR data. The observed C IV line intensity indicates that RCW 114 is much closer to us than WR 90, a Wolf-Rayet star that was thought to be associated with RCW 114 in some of the previous studies. We also found the existence of a small H I bubble centered on WR 90, with a different local standard of rest velocity range from that of the large H I bubble which was identified previously as related to RCW 114. These findings imply that the RCW 114 nebula is an old supernova remnant which is not associated with WR 90. Additionally, the global morphologies of the C IV, H-alpha, and H I emissions show that RCW 114 has evolved in a non-uniform interstellar medium.



قيم البحث

اقرأ أيضاً

136 - I.-J. Kim , K.-I. Seon , K.-W. Min 2010
We present the first far-ultraviolet (FUV) emission-line morphologies of the whole region of the supernova remnant (SNR) G65.3+5.7 using the FIMS/SPEAR data. The morphologies of the C IV {lambda}{lambda}1548, 1551, He II {lambda}1640, and O III] {lam bda}{lambda}1661, 1666 lines appear to be closely related to the optical and/or soft X-ray images obtained in previous studies. Dramatic differences between the C IV morphology and the optical [O III] {lambda}5007 image provide clues to a large resonant-scattering region and a foreground dust cloud. The FUV morphologies also reveal the overall distribution of various shocks in different evolutionary phases and an evolutionary asymmetry between the east and the southwest sides in terms of Galactic coordinates, possibly due to a Galactic density gradient in the global scale. The relative X-ray luminosity of G65.3+5.7 to C IV luminosity is considerably lower than those of the Cygnus Loop and the Vela SNRs. This implies that G65.3+5.7 has almost evolved into the radiative stage in the global sense and supports the previous proposal that G65.3+5.7 has lost its bright X-ray shell and become a member of mixed-morphology SNRs as it has evolved beyond the adiabatic stage.
219 - Vicki Lowe 2014
Here we report observations of the two lowest inversion transitions of ammonia with the 70-m Tidbinbilla radio telescope. They were conducted to determine the kinetic temperatures in the dense clumps of the G333 giant molecular cloud associated with RCW 106 and to examine the effect that accurate temperatures have on the calculation of derived quantities such as mass. This project is part of a larger investigation to understand the timescales and evolutionary sequence associated with high-mass star formation, particularly its earliest stages. Assuming that the initial chemical composition of a giant molecular cloud is uniform, any abundance variations within will be due to evolutionary state. We have identified 63 clumps using SIMBA 1.2-mm dust continuum maps and have calculated gas temperatures for most (78 per cent) of these dense clumps. After using Spitzer GLIMPSE 8.0 $mu$m emission to separate the sample into IR-bright and IR-faint clumps, we use statistical tests to examine whether our classification shows different populations in terms of mass and temperature. We find that clump mass and column density show no significant population difference, and that kinetic temperature is the best parameter to distinguish between the gravitationally bound state of each clump. The kinetic temperature was the only parameter found to have a significantly low probability of being drawn from the same population. This suggests that clump radii does not have a large effect on the temperature of a clump, so clumps of similar radii may have different internal heating mechanisms. We also find that while the IR-bright clumps have a higher median virial mass, both samples have a similar range for both virial mass and FWHM. There are 87 per cent (40 of 46) of the clumps with masses larger than the virial mass, suggesting that they will form stars or are already undergoing star formation.
We simulate the evolution of supernova remnant (SNR) W51C. The simulation shows the existence of a new northeast edge. We present magnetic field structure of the W51 complex (SNR W51C and two HII regions W51A/B) by employing the 11 cm survey data of Effelsberg. This new edge is identified and overlaps with W51A along the line of sight, which gives a new angular diameter of about 37 for the quasi-circular remnant. In addition, we assemble the OH spectral lines (1612/1665/1720 MHz) towards the complex by employing the newly released THOR (The HI OH Recombination line survey of Milky Way) data. We find that the known 1720 MHz OH maser in the W51B/C overlap area is located away from the detected 1612/1665MHz absorption region. The latter is sitting at the peak of the HII region G49.2-0.35 within W51B.
Diffusive shock acceleration by the shockwaves in supernova remnants (SNRs) is widely accepted as the dominant source for Galactic cosmic rays. However, it is unknown what determines the maximum energy of accelerated particles. The surrounding enviro nment could be one of the key parameters. The SNR RCW 86 shows both thermal and non-thermal X-ray emission with different spatial morphologies. These emission originate from the shock-heated plasma and accelerated electrons respectively, and their intensities reflect their density distributions. Thus, the remnant provides a suitable laboratory to test possible association between the acceleration efficiency and the environment. In this paper, we present results of spatially resolved spectroscopy of the entire remnant with Suzaku. The spacially-resolved spectra are well reproduced with a combination of a power-law for synchrotron emission and a two-component optically thin thermal plasma, corresponding to the shocked interstellar medium (ISM) with kT of 0.3-0.6 keV and Fe-dominated ejecta. It is discovered that the photon index of the nonthermal component becomes smaller with decreasing the emission measure of the shocked ISM, where the shock speed has remained high. This result implies that the maximum energy of accelerated electrons in RCW 86 is higher in the low-density and higher shock speed regions.
We present extensive spectroscopic observations of supernova remnant (SNR) S147 collected with the Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST). The spectra were carefully sky-subtracted taking into account the complex filamenta ry structure of S147. We have utilized all available LAMOST spectra toward S147, including sky and stellar spectra. By measuring the prominent optical emission lines including H{alpha}, [NII]{lambda}6584, and [SII]{lambda}{lambda}6717,6731, we present maps of radial velocity and line intensity ratio covering the whole nebula of S147 with unprecedented detail. The maps spatially correlated well with the complex filamentary structure of S147. For the central 2 deg of S147, the radial velocity varies from -100 to 100 km/s and peaks between ~ 0 and 10 km/s. The intensity ratios of H{alpha}/[SII]{lambda}{lambda}6717,6731, [SII]{lambda}6717/{lambda}6731 and H{alpha}/[NII]{lambda}6584 peak at about 0.77, 1.35 and 1.48, respectively, with a scatter of 0.17, 0.19 and 0.37, respectively. The intensity ratios are consistent with the literature values. However, the range of variations of line intensity ratios estimated here and representative of the whole nebula, are larger than previously estimated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا