ترغب بنشر مسار تعليمي؟ اضغط هنا

The international pulsar timing array project: using pulsars as a gravitational wave detector

151   0   0.0 ( 0 )
 نشر من قبل George Hobbs
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The International Pulsar Timing Array project combines observations of pulsars from both Northern and Southern hemisphere observatories with the main aim of detecting ultra-low frequency (~10^-9 to 10^-8 Hz) gravitational waves. Here we introduce the project, review the methods used to search for gravitational waves emitted from coalescing supermassive binary black-hole systems in the centres of merging galaxies and discuss the status of the project.



قيم البحث

اقرأ أيضاً

The first direct detection of gravitational waves may be made through observations of pulsars. The principal aim of pulsar timing array projects being carried out worldwide is to detect ultra-low frequency gravitational waves (f ~ 10^-9 to 10^-8 Hz). Such waves are expected to be caused by coalescing supermassive binary black holes in the cores of merged galaxies. It is also possible that a detectable signal could have been produced in the inflationary era or by cosmic strings. In this paper we review the current status of the Parkes Pulsar Timing Array project (the only such project in the Southern hemisphere) and compare the pulsar timing technique with other forms of gravitational-wave detection such as ground- and space-based interferometer systems.
The NANOGrav Collaboration reported strong Bayesian evidence for a common-spectrum stochastic process in its 12.5-yr pulsar timing array dataset, with median characteristic strain amplitude at periods of a year of $A_{rm yr} = 1.92^{+0.75}_{-0.55} ti mes 10^{-15}$. However, evidence for the quadrupolar Hellings & Downs interpulsar correlations, which are characteristic of gravitational wave signals, was not yet significant. We emulate and extend the NANOGrav dataset, injecting a wide range of stochastic gravitational wave background (GWB) signals that encompass a variety of amplitudes and spectral shapes, and quantify three key milestones: (I) Given the amplitude measured in the 12.5 yr analysis and assuming this signal is a GWB, we expect to accumulate robust evidence of an interpulsar-correlated GWB signal with 15--17 yrs of data, i.e., an additional 2--5 yrs from the 12.5 yr dataset; (II) At the initial detection, we expect a fractional uncertainty of $40%$ on the power-law strain spectrum slope, which is sufficient to distinguish a GWB of supermassive black-hole binary origin from some models predicting more exotic origins;(III) Similarly, the measured GWB amplitude will have an uncertainty of $44%$ upon initial detection, allowing us to arbitrate between some population models of supermassive black-hole binaries. In addition, power-law models are distinguishable from those having low-frequency spectral turnovers once 20~yrs of data are reached. Even though our study is based on the NANOGrav data, we also derive relations that allow for a generalization to other pulsar-timing array datasets. Most notably, by combining the data of individual arrays into the International Pulsar Timing Array, all of these milestones can be reached significantly earlier.
192 - R. N. Manchester 2012
A pulsar timing array (PTA), in which observations of a large sample of pulsars spread across the celestial sphere are combined, allows investigation of global phenomena such as a background of gravitational waves or instabilities in atomic timescale s that produce correlated timing residuals in the pulsars of the array. The Parkes Pulsar Timing Array (PPTA) is an implementation of the PTA concept based on observations with the Parkes 64-m radio telescope. A sample of 20 millisecond pulsars is being observed at three radio-frequency bands, 50cm (~700 MHz), 20cm (~1400 MHz) and 10cm (~3100 MHz), with observations at intervals of 2 - 3 weeks. Regular observations commenced in early 2005. This paper describes the systems used for the PPTA observations and data processing, including calibration and timing analysis. The strategy behind the choice of pulsars, observing parameters and analysis methods is discussed. Results are presented for PPTA data in the three bands taken between 2005 March and 2011 March. For ten of the 20 pulsars, rms timing residuals are less than 1 microsec for the best band after fitting for pulse frequency and its first time derivative. Significant red timing noise is detected in about half of the sample. We discuss the implications of these results on future projects including the International Pulsar Timing Array (IPTA) and a PTA based on the Square Kilometre Array. We also present an extended PPTA data set that combines PPTA data with earlier Parkes timing data for these pulsars.
We have constructed a new timescale, TT(IPTA16), based on observations of radio pulsars presented in the first data release from the International Pulsar Timing Array (IPTA). We used two analysis techniques with independent estimates of the noise mod els for the pulsar observations and different algorithms for obtaining the pulsar timescale. The two analyses agree within the estimated uncertainties and both agree with TT(BIPM17), a post-corrected timescale produced by the Bureau International des Poids et Mesures (BIPM). We show that both methods could detect significant errors in TT(BIPM17) if they were present. We estimate the stability of the atomic clocks from which TT(BIPM17) is derived using observations of four rubidium fountain clocks at the US Naval Observatory. Comparing the power spectrum of TT(IPTA16) with that of these fountain clocks suggests that pulsar-based timescales are unlikely to contribute to the stability of the best timescales over the next decade, but they will remain a valuable independent check on atomic timescales. We also find that the stability of the pulsar-based timescale is likely to be limited by our knowledge of solar-system dynamics, and that errors in TT(BIPM17) will not be a limiting factor for the primary goal of the IPTA, which is to search for the signatures of nano-Hertz gravitational waves.
A low-frequency gravitational-wave background (GWB) from the cosmic merger history of supermassive black holes is expected to be detected in the next few years by pulsar timing arrays. A GWB induces distinctive correlations in the pulsar residuals -- - the expected arrival time of the pulse less its actual arrival time. Simplifying assumptions are made in order to write an analytic expression for this correlation function, called the Hellings and Downs curve for an isotropic GWB, which depends on the angular separation of the pulsar pairs, the gravitational-wave frequency considered, and the distance to the pulsars. This is called the short-wavelength approximation, which we prove here rigorously and analytically for the first time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا