ترغب بنشر مسار تعليمي؟ اضغط هنا

The low wind expansion velocity of metal-poor carbon stars in the Halo and the Sagittarius stream

132   0   0.0 ( 0 )
 نشر من قبل Eric Lagadec
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection, from observations using the James Clerk Maxwell Telescope, of CO J $=$ 3$to$ 2 transition lines in six carbon stars, selected as members of the Galactic Halo and having similar infrared colors. Just one Halo star had been detected in CO before this work. Infrared observations show that these stars are red (J-K $>$3), due to the presence of large dusty circumstellar envelopes. Radiative transfer models indicates that these stars are losing mass with rather large dust mass-loss rates in the range 1--3.3 $times$$10^{-8}$M$_{odot}$yr$^{-1}$, similar to what can be observed in the Galactic disc. We show that two of these stars are effectively in the Halo, one is likely linked to the stream of the Sagittarius Dwarf Spheroidal galaxy (Sgr dSph), and the other three stars certainly belong to the thick disc. The wind expansion velocities of the observed stars are low compared to carbon stars in the thin disc and are lower for the stars in the Halo and the Sgr dSph stream than in the thick disc. We discuss the possibility that the low expansion velocities result from the low metallicity of the Halo carbon stars. This implies that metal-poor carbon stars lose mass at a rate similar to metal-rich carbon stars, but with lower expansion velocities, as predicted by recent theoretical models. This result implies that the current estimates of mass-loss rates from carbon stars in Local Group galaxies will have to be reconsidered.



قيم البحث

اقرأ أيضاً

We present spectroscopic observations from the {it Spitzer Space Telescope} of six carbon-rich AGB stars in the Sagittarius Dwarf Spheroidal Galaxy (Sgr dSph) and two foreground Galactic carbon stars. The band strengths of the observed C$_2$H$_2$ and SiC features are very similar to those observed in Galactic AGB stars. The metallicities are estimated from an empirical relation between the acetylene optical depth and the strength of the SiC feature. The metallicities are higher than those of the LMC, and close to Galactic values. While the high metallicity could imply an age of around 1 Gyr, for the dusty AGB stars, the pulsation periods suggest ages in excess of 2 or 3 Gyr. We fit the spectra of the observed stars using the DUSTY radiative transfer model and determine their dust mass-loss rates to be in the range 1.0--3.3$times 10^{-8} $M$_{odot}$yr$^{-1}$. The two Galactic foreground carbon-rich AGB stars are located at the far side of the solar circle, beyond the Galactic Centre. One of these two stars show the strongest SiC feature in our present Local Group sample.
The origin of carbon-enhanced metal-poor (CEMP) stars plays a key role in characterising the formation and evolution of the first stars and the Galaxy since the extremely-poor (EMP) stars with [Fe/H] leq -2.5 share the common features of carbon enhan cement in their surface chemical compositions. The origin of these stars is not yet established due to the controversy of the origin of CEMP stars without the enhancement of s-process element abundances, i.e., so called CEMP-no stars. In this paper, we elaborate the s-process nucleosynthesis in the EMP AGB stars and explore the origin of CEMP stars. We find that the efficiency of the s-process is controlled by O rather than Fe at [Fe/H] lesssim -2. We demonstrate that the relative abundances of Sr, Ba, Pb to C are explained in terms of the wind accretion from AGB stars in binary systems.
Detailed spectroscopic studies of metal-poor halo stars have highlighted the important role of carbon-enhanced metal-poor (CEMP) stars in understanding the early production and ejection of carbon in the Galaxy and in identifying the progenitors of th e CEMP stars among the first stars formed after the Big Bang. Recent work has also classified the CEMP stars by absolute carbon abundance, A(C), into high- and low-C bands, mostly populated by binary and single stars, respectively. Our aim is to determine the frequency and orbital parameters of binary systems among the CEMP-s stars, which exhibit strong enhancements of neutron-capture elements associated with the s-process. This allows us to test whether local mass transfer from a binary companion is necessary and sufficient to explain their dramatic carbon excesses. Eighteen of the 22 stars exhibit clear orbital motion, yielding a binary frequency of 82+-10%, while four stars appear to be single (18+-10%). We thus confirm that the binary frequency of CEMP-s stars is much higher than for normal metal-poor giants, but not 100% as previously claimed. Secure orbits are determined for 11 of the binaries and provisional orbits for six long-period systems (P > 3,000 days), and orbital circularisation time scales are discussed. The conventional scenario of local mass transfer from a former AGB binary companion does appear to account for the chemical composition of most CEMP-s stars. However, the excess of C and s-process elements in some single CEMP-s stars was apparently transferred to their natal clouds by an external (distant) source. This finding has important implications for our understanding of carbon enrichment in the early Galactic halo and some high-redshift DLA systems, and of the mass loss from extremely metal-poor AGB stars. Abridged.
139 - D. Carollo , T. C. Beers , J. Bovy 2011
(Abridged) Carbon-enhanced metal-poor (CEMP) stars in the halo components of the Milky Way are explored, based on accurate determinations of the carbon-to-iron ([C/Fe]) abundance ratios and kinematic quantities for over 30000 calibration stars from t he Sloan Digital Sky Survey (SDSS). Using our present criterion that low-metallicity stars exhibiting [C/Fe] ratios (carbonicity) in excess of [C/Fe]$ = +0.7$ are considered CEMP stars, the global frequency of CEMP stars in the halo system for feh $< -1.5$ is 8%; for feh $< -2.0$ it is 12%; for feh $<-2.5$ it is 20%. We also confirm a significant increase in the level of carbon enrichment with declining metallicity, growing from $<$[C/Fe]$>$ $sim +1.0$ at feh $= -1.5$ to $<$[C/Fe]$>$ $sim +1.7$ at feh $= -2.7$. The nature of the carbonicity distribution function (CarDF) changes dramatically with increasing distance above the Galactic plane, $|$Z$|$. For $|$Z$|$ $< 5$ kpc, relatively few CEMP stars are identified. For distances $|$Z$|$ $> 5$ kpc, the CarDF exhibits a strong tail towards high values, up to [C/Fe] $>$ +3.0. We also find a clear increase in the CEMP frequency with $|$Z$|$. For stars with $-2.0 <$ [Fe/H] $< -$1.5, the frequency grows from 5% at $|$Z$|$ $sim 2$ kpc to 10% at $|$Z$|$ $sim 10$ kpc. For stars with [Fe/H] $< -$2.0, the frequency grows from 8% at $|$Z$|$ $sim 2$ kpc to 25% at $|$Z$|$ $sim 10$ kpc. For stars with $-2.0 <$ [Fe/H] $< -$1.5, the mean carbonicity is $<$[C/Fe]$>$ $sim +1.0$ for 0 kpc $<$ $|$Z$|$ $<$ 10 kpc, with little dependence on $|$Z$|$; for [Fe/H] $< -$2.0, $<$[C/Fe]$>$ $sim +1.5$, again roughly independent of $|$Z$|$.
A substantial fraction of the lowest metallicity stars show very high enhancements in carbon. It is debated whether these enhancements reflect the stars birth composition, or if their atmospheres were subsequently polluted, most likely by accretion f rom an AGB binary companion. Here we investigate and compare the binary properties of three carbon-enhanced sub-classes: The metal-poor CEMP-s stars that are additionally enhanced in barium; the higher metallicity (sg)CH- and Ba II stars also enhanced in barium; and the metal-poor CEMP-no stars, not enhanced in barium. Through comparison with simulations, we demonstrate that all barium-enhanced populations are best represented by a ~100% binary fraction with a shorter period distribution of at maximum ~20,000 days. This result greatly strengthens the hypothesis that a similar binary mass transfer origin is responsible for their chemical patterns. For the CEMP-no group we present new radial velocity data from the Hobby-Eberly Telescope for 15 stars to supplement the scarce literature data. Two of these stars show indisputable signatures of binarity. The complete CEMP-no dataset is clearly inconsistent with the binary properties of the CEMP-s class, thereby strongly indicating a different physical origin of their carbon enhancements. The CEMP-no binary fraction is still poorly constrained, but the population resembles more the binary properties in the Solar Neighbourhood.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا