ﻻ يوجد ملخص باللغة العربية
The post-perovskite phase of (Mg,Fe)SiO3 is believed to be the main mineral phase of the Earths lowermost mantle (the D layer). Its properties explain numerous geophysical observations associated with this layer - for example, the D discontinuity, its topography and seismic anisotropy within the layer. Here we use a novel simulation technique, first-principles metadynamics, to identify a family of low-energy polytypic stacking-fault structures intermediate between the perovskite and post-perovskite phases. Metadynamics trajectories identify plane sliding involving the formation of stacking faults as the most favourable pathway for the phase transition, and as a likely mechanism for plastic deformation of perovskite and postperovskite. In particular, the predicted slip planes are (010) for perovskite (consistent with experiment) and (110) for postperovskite (in contrast to the previously expected (010) slip planes). Dominant slip planes define the lattice preferred orientation and elastic anisotropy of the texture. The (110) slip planes in post-perovskite require a much smaller degree of lattice preferred orientation to explain geophysical observations of shear-wave anisotropy in the D layer.
The Earths lower mantle is believed to be composed mainly of (Mg,Fe)SiO3 perovskite, with lesser amounts of (Mg,Fe)O and CaSiO3). But it has not been possible to explain many unusual properties of the lowermost 150 km of the mantle (the D layer) with
The temperature anomalies in the Earths mantle associated with thermal convection1 can be inferred from seismic tomography, provided that the elastic properties of mantle minerals are known as a function of temperature at mantle pressures. At present
A broad variety of defects has been observed in two-dimensional materials. Many of these defects can be created by top-down methods such as electron irradiation or chemical etching, while a few of them are created along bottom-up processes, in partic
Coherent diffraction imaging (CDI) on Bragg reflections is a promising technique for the study of three-dimensional (3D) composition and strain fields in nanostructures, which can be recovered directly from the coherent diffraction data recorded on s
Long-range magnetic orders in atomically thin ferromagnetic CrI3 give rise to new fascinating physics and application perspectives. The physical properties of two-dimensional (2D) ferromagnetism CrI3 are significantly influenced by interlayer spacing