ترغب بنشر مسار تعليمي؟ اضغط هنا

Virial identity and weak dispersion for the magnetic Dirac equation

80   0   0.0 ( 0 )
 نشر من قبل Nabile Boussaid
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the dispersive properties of a Dirac system perturbed with a magnetic field. We prove a general virial identity; as applications, we obtain smoothing and endpoint Strichartz estimates which are optimal from the decay point of view. We also prove a Hardy-type inequality for the perturbed Dirac operator.


قيم البحث

اقرأ أيضاً

We prove sharp $L^infty$ decay and modified scattering for a one-dimensional dispersion-managed cubic nonlinear Schrodinger equation with small initial data chosen from a weighted Sobolev space. Specifically, we work with an averaged version of the d ispersion-managed NLS in the strong dispersion management regime. The proof adapts techniques from Hayashi-Naumkin and Kato-Pusateri, which established small-data modified scattering for the standard $1d$ cubic NLS.
98 - William Borrelli 2020
In this paper we show the existence of infinitely many symmetric solutions for a cubic Dirac equation in two dimensions, which appears as effective model in systems related to honeycomb structures. Such equation is critical for the Sobolev embedding and solutions are found by variational methods. Moreover, we prove also prove smoothness and exponential decay at infinity.
We derive dispersion estimates for solutions of a one-dimensional discrete Dirac equations with a potential. In particular, we improve our previous result, weakening the conditions on the potential. To this end we also provide new results concerning scattering for the corresponding perturbed Dirac operators which are of independent interest. Most notably, we show that the reflection and transmission coefficients belong to the Wiener algebra.
71 - Elena Kopylova 2019
We prove global well-posedness for 3D Dirac equation with a concentrated nonlinearity.
We consider a quasilinear KdV equation that admits compactly supported traveling wave solutions (compactons). This model is one of the most straightforward instances of degenerate dispersion, a phenomenon that appears in a variety of physical setting s as diverse as sedimentation, magma dynamics and shallow water waves. We prove the existence and uniqueness of solutions with sufficiently smooth, spatially localized initial data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا