ترغب بنشر مسار تعليمي؟ اضغط هنا

The Cosmic Ray Energy Spectrum Measured with KASCADE-Grande

423   0   0.0 ( 0 )
 نشر من قبل Andreas Haungs
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

KASCADE-Grande is a multi-detector experiment at Forschungszentrum Karlsruhe, Germany for measuring extensive air showers in the primary energy range of 100 TeV to 1 EeV. This contribution attempts to provide a synopsis of the current results of the experiment. In particular, the reconstruction of the all-particle energy spectrum in the range of 10 PeV to 1 EeV based on four different methods with partly different sources of systematic uncertainties is presented. Since the calibration of the observables in terms of the primary energy and mass depends on Monte Carlo simulations, we compare the results of various methods applied to the same sample of measured data. In addition, first investigations on the elemental composition of the cosmic particles as well as on tests of hadronic interaction models underlying the analyses are discussed.



قيم البحث

اقرأ أيضاً

The energy spectrum of cosmic rays between 10**16 eV and 10**18 eV, derived from measurements of the shower size (total number of charged particles) and the total muon number of extensive air showers by the KASCADE-Grande experiment, is described. Th e resulting all-particle energy spectrum exhibits strong hints for a hardening of the spectrum at approximately 2x10**16 eV and a significant steepening at c. 8x10**16 eV. These observations challenge the view that the spectrum is a single power law between knee and ankle. Possible scenarios generating such features are discussed in terms of astrophysical processes that may explain the transition region from galactic to extragalactic origin of cosmic rays.
The detection of high-energy cosmic rays above a few hundred TeV is realized by the observation of extensive air-showers. By using the multi-detector setup of KASCADE-Grande, energy spectrum, elemental composition, and anisotropies of high-energy cos mic rays in the energy range from below the knee up to 2 EeV are investigated. In addition, the large high-quality data set permits distinct tests of the validity of hadronic interaction models used in interpreting air-shower measurements. After more than 16 years, the KASCADE-Grande experiment terminated measurements end of 2012. This contribution will give an overview of the main results of the data analysis achieved so far, and will report about the status of KCDC, the KASCADE Cosmic-ray Data Center, where via a web-based interface the data will be made available for the interested public.
The all-particle energy spectrum as measured by the KASCADE-Grande experiment for E = 10^{16} - 10^{18} eV is presented within the framework of the QGSJET II/FLUKA hadronic interaction models. Three different methods were applied based on the muon si ze and the total number of charged particles individually and in combination. From the study it is found that the spectrum cannot be completely described by a smooth power law due to the presence of characteristic features.
The KASCADE-Grande detector is an air-shower array devoted to the study of primary cosmic rays with very high-energies (E = 10^{16} - 10^{18} eV). The instrument is composed of different particle detector systems suitable for the detailed study of th e properties of Extensive Air Showers (EAS) developed by cosmic rays in the atmosphere. Among the EAS observables studied with the detector, the charged number of particles, the muon content (at different energy thresholds), and the number of electrons are found. By comparing the measurements of these air-shower parameters with the expectations from MC simulations, different hadronic interaction models can be tested at the high-energy regime with the KASCADE-Grande experiment. In this work, the results of a study on the evolution of the muon content of EAS with zenith angle, performed with the KASCADE-Grande instrument, is presented. Measurements are compared with predictions from MC simulations based on the QGSJET II, QGSJET II-04, SIBYLL 2.1 and EPOS 1.99 hadronic interaction models. A mismatch between experiment and simulations is observed. A similar problem is found for the evolution of the lateral distribution function of muons in the atmosphere.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا