ترغب بنشر مسار تعليمي؟ اضغط هنا

Comet dust as a mixture of aggregates and solid particles: model consistent with ground-based and space-mission results

36   0   0.0 ( 0 )
 نشر من قبل Ludmilla Kolokolova
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The most successful model of comet dust presents comet particles as aggregates of submicron grains. It qualitatively explains the spectral and angular change in the comet brightness and polarization and is consistent with the thermal infrared data and composition of the comet dust obtained {it in situ} for comet 1P/Halley. However, it experiences some difficulties in providing a quantitative fit to the observational data. Here we present a model that considers comet dust as a mixture of aggregates and compact particles. The model is based on the Giotto and Stardust mission findings that both aggregates (made mainly of organics, silicates, and carbon) and solid silicate particles are present in the comet dust. We simulate aggregates as {bf Ballistic Cluster-Cluster Aggregates (BCCA)} and compact particles as polydisperse spheroids with some distribution of the aspect ratio. The particles follow a power-law size distribution with the power -3 that is close to the one obtained for comet dust {it in situ}, at studies of the Stardust returned samples, and the results of ground-based observations of comets. The model provides a good fit to the angular polarization curve. It also reproduces the positive spectral gradient of polarization, red color of the dust, and {bf low albedo. It also has the ratio of compact to fluffy particles close to the one found {it in situ} for comet 1P/Halley} and the mass ratio of silicate to carbonaceous materials equal to unity that is in accordance with the elemental abundances of Halleys dust found by Giotto mission.

قيم البحث

اقرأ أيضاً

Comets are thought to preserve almost pristine dust particles, thus providing a unique sample of the properties of the early solar nebula. The microscopic properties of this dust played a key part in particle aggregation during the formation of the S olar System. Cometary dust was previously considered to comprise irregular, fluffy agglomerates on the basis of interpretations of remote observations in the visible and infrared and the study of chondritic porous interplanetary dust particles that were thought, but not proved, to originate in comets. Although the dust returned by an earlier mission has provided detailed mineralogy of particles from comet 81P/Wild, the fine-grained aggregate component was strongly modified during collection. Here we report in situ measurements of dust particles at comet 67P/Churyumov-Gerasimenko. The particles are aggregates of smaller, elongated grains, with structures at distinct sizes indicating hierarchical aggregation. Topographic images of selected dust particles with sizes of one micrometre to a few tens of micrometres show a variety of morphologies, including compact single grains and large porous aggregate particles, similar to chondritic porous interplanetary dust particles. The measured grain elongations are similar to the value inferred for interstellar dust and support the idea that such grains could represent a fraction of the building blocks of comets. In the subsequent growth phase, hierarchical agglomeration could be a dominant process and would produce aggregates that stick more easily at higher masses and velocities than homogeneous dust particles. The presence of hierarchical dust aggregates in the near-surface of the nucleus of comet 67P also provides a mechanism for lowering the tensile strength of the dust layer and aiding dust release.
$K2$s Campaign 9 ($K2$C9) will conduct a $sim$3.7 deg$^{2}$ survey toward the Galactic bulge from 7/April through 1/July of 2016 that will leverage the spatial separation between $K2$ and the Earth to facilitate measurement of the microlens parallax $pi_{rm E}$ for $gtrsim$127 microlensing events. These will include several that are planetary in nature as well as many short-timescale microlensing events, which are potentially indicative of free-floating planets (FFPs). These satellite parallax measurements will in turn allow for the direct measurement of the masses of and distances to the lensing systems. In this white paper we provide an overview of the $K2$C9 space- and ground-based microlensing survey. Specifically, we detail the demographic questions that can be addressed by this program, including the frequency of FFPs and the Galactic distribution of exoplanets, the observational parameters of $K2$C9, and the array of resources dedicated to concurrent observations. Finally, we outline the avenues through which the larger community can become involved, and generally encourage participation in $K2$C9, which constitutes an important pathfinding mission and community exercise in anticipation of $WFIRST$.
Understanding the heat transfer mechanism within dust aggregates is of great importance for many subjects in planetary science. We calculated the coordination number and the thermal conductivity through the solid network of compressed dust aggregates . We found a simple relationship between the coordination number and the filling factor and revealed that the thermal conductivity through the solid network of aggregates is represented by a power-law function of the filling factor and the coordination number.
The Jupiter-family comet 103P/Hartley 2 (103P) was the target of the NASA EPOXI mission. In support of this mission, we conducted observations from radio to submillimeter wavelengths of comet 103P in the three weeks preceding the spacecraft rendezvou s on UT 2010 November 4.58. This time period included the passage at perihelion and the closest approach of the comet to the Earth. Here we report detections of HCN, H2CO, CS, and OH and upper limits for HNC and DCN towards 103P, using the Arizona Radio Observatory Kitt Peak 12m telescope (ARO 12m) and submillimeter telescope (SMT), the James Clerk Maxwell Telescope (JCMT) and the Greenbank Telescope (GBT). The water production rate, QH2O = (0.67 - 1.07) x 10^28 s^-1, was determined from the GBT OH data. From the average abundance ratios of HCN and H2CO relative to water (0.13 +/- 0.03 % and 0.14 +/- 0.03 %, respectively), we conclude that H2CO is depleted and HCN is normal with respect to typically-observed cometary mixing ratios. However, the abundance ratio of HCN with water shows a large diversity with time. Using the JCMT data we measured an upper limit for the DCN/HCN ratio <0.01. Consecutive observations of ortho- H2CO and para-H2CO on November 2 (from data obtained at the JCMT), allowed us to derive an ortho : para ratio (OPR) ~ 2.12 +/- 0.59 (1sigma), corresponding to Tspin > 8 K (2sigma).
Comets are thought to have information about the formation process of our solar system. Recently, detailed information about comet 67P/Churyumov-Gerasimenko has been found by a spacecraft mission Rosetta. It is remarkable that its tensile strength wa s estimated. In this paper, we measure and formulate the tensile strength of porous dust aggregates using numerical simulations, motivated by porous dust aggregation model of planetesimal formation. We perform three-dimensional numerical simulations using a monomer interaction model with periodic boundary condition. We stretch out a dust aggregate with a various initial volume filling factor between $10^{-2}$ and 0.5. We find that the tensile stress takes the maximum value at the time when the volume filling factor decreases to about a half of the initial value. The maximum stress is defined to be the tensile strength. We take an average of the results with 10 different initial shapes to smooth out the effects of initial shapes of aggregates. Finally, we numerically obtain the relation between the tensile strength and the initial volume filling factor of dust aggregates. We also use a simple semi-analytical model and successfully reproduce the numerical results, which enables us to apply to a wide parameter range and different materials. The obtained relation is consistent with previous experiments and numerical simulations about silicate dust aggregates. We estimate that the monomer radius of comet 67P has to be about 3.3--220 $mathrm{mu m}$ to reproduce its tensile strength using our model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا